Electronic catalog

el cat en


 

База данных: ELS Lan

Page 1, Results: 1

Отмеченные записи: 0

514.743.4(075.8)
Келлер, И. Э.
    Тензорное исчисление / И. Э. Келлер. - Санкт-Петербург : Лань, 2022. - 176 с. . - ISBN 978-5-8114-1352-2
Книга из коллекции Лань - Математика. Допущено УМО вузов РФ по университетскому политехническому образованию в качестве учебного пособия для студентов вузов, обучающихся по направлению 151600 — «Прикладная механика» (№ 05.03.01-06/68 от 22.05.2012)
. - https://e.lanbook.com/book/168427

УДК
ББК В 181.142я73-1

Рубрики: Математика--Прикладная математика--Лань

Кл.слова (ненормированные):
тензорные пространства -- точечные пространства -- векторные пространства -- свойства тензоров -- прикладная математика -- алгебра тензорная (основы) -- анализ -- анализ тензорный -- аффинное -- аффинное пространство -- векторное -- геометрия поверхностей (кривых) -- декартовы системы координат -- евклидово -- евклидово пространство -- интегрирование тензоров -- исчисление тензорное (основы) -- кривая -- кристоффеля символ -- лагранжа - сильвестра полином -- линейное -- линейное пространство -- механика сплошной среды -- поверхность -- преобразования ортогональные -- пространство -- разложение спектральное -- римана - кристофеля тензор -- симметрия -- спектр -- тензор -- тензорное исчисление -- тензорный анализ -- тензоры (исчисления) -- тензоры (линейные пространства) -- тестовые задания -- точечное -- трехмерное пространство -- умножение векторное -- учебник и пособие * -- френе репер -- функции тензорные -- функция тензорная
Аннотация: Последовательно определены векторные, тензорные и точечные пространства и операции над элементами этих пространств. Ряд утверждений доказывается в алгебраической форме, но достаточное внимание уделяется и компонентной записи. Рассмотрены спектральные свойства тензоров, тензорные функции и их производные по тензорному аргументу, тензорный анализ в трехмерном пространстве, а также на поверхностях и кривых. Дается достаточный математический аппарат для изложения дифференциальной геометрии, механики сплошной среды, физики, постановки связанных задач движения, диффузии, фазовых и химических превращений многокомпонентных сред с поверхностями разрыва. Имеются упражнения, примеры тестовых заданий и тем курсовых работ. Предназначено для студентов механико- и физико-математических направлений.

Келлер, И. Э. Тензорное исчисление [Электронный ресурс] , 2022. - 176 с.

1.

Келлер, И. Э. Тензорное исчисление [Электронный ресурс] , 2022. - 176 с.

Открыть исходную запись


514.743.4(075.8)
Келлер, И. Э.
    Тензорное исчисление / И. Э. Келлер. - Санкт-Петербург : Лань, 2022. - 176 с. . - ISBN 978-5-8114-1352-2
Книга из коллекции Лань - Математика. Допущено УМО вузов РФ по университетскому политехническому образованию в качестве учебного пособия для студентов вузов, обучающихся по направлению 151600 — «Прикладная механика» (№ 05.03.01-06/68 от 22.05.2012)
. - https://e.lanbook.com/book/168427

УДК
ББК В 181.142я73-1

Рубрики: Математика--Прикладная математика--Лань

Кл.слова (ненормированные):
тензорные пространства -- точечные пространства -- векторные пространства -- свойства тензоров -- прикладная математика -- алгебра тензорная (основы) -- анализ -- анализ тензорный -- аффинное -- аффинное пространство -- векторное -- геометрия поверхностей (кривых) -- декартовы системы координат -- евклидово -- евклидово пространство -- интегрирование тензоров -- исчисление тензорное (основы) -- кривая -- кристоффеля символ -- лагранжа - сильвестра полином -- линейное -- линейное пространство -- механика сплошной среды -- поверхность -- преобразования ортогональные -- пространство -- разложение спектральное -- римана - кристофеля тензор -- симметрия -- спектр -- тензор -- тензорное исчисление -- тензорный анализ -- тензоры (исчисления) -- тензоры (линейные пространства) -- тестовые задания -- точечное -- трехмерное пространство -- умножение векторное -- учебник и пособие * -- френе репер -- функции тензорные -- функция тензорная
Аннотация: Последовательно определены векторные, тензорные и точечные пространства и операции над элементами этих пространств. Ряд утверждений доказывается в алгебраической форме, но достаточное внимание уделяется и компонентной записи. Рассмотрены спектральные свойства тензоров, тензорные функции и их производные по тензорному аргументу, тензорный анализ в трехмерном пространстве, а также на поверхностях и кривых. Дается достаточный математический аппарат для изложения дифференциальной геометрии, механики сплошной среды, физики, постановки связанных задач движения, диффузии, фазовых и химических превращений многокомпонентных сред с поверхностями разрыва. Имеются упражнения, примеры тестовых заданий и тем курсовых работ. Предназначено для студентов механико- и физико-математических направлений.

Page 1, Results: 1

 

All acquisitions for 
Or select a month