el cat en
База данных: ELS EBSCO eBook
Page 1, Results: 2
Отмеченные записи: 0
1.
Подробнее
DDC 515/.357
K 56
Klibanov, (Michael V.),.
Inverse Problems and Carleman Estimates : : Global Uniqueness, Global Convergence and Experimental Data / / Michael V. Klibanov, Jingzhi Li. - 1515/9783110745481. - Berlin ; ; Boston : : De Gruyter,, ©2021. - 1 online resource (XVI, 328 p.). ( час. мин.), 1515/9783110745481. - (Inverse and Ill-Posed Problems Series ; ; volume 63). - In English. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/1F9617F7-6E58-4E26-A925-7E3B4DD5906F. - ISBN 3110745488 (electronic book). - ISBN 9783110745481 (electronic bk.)
Description based on online resource; title from digital title page (viewed on October 06, 2021).
Параллельные издания:
1. Print version: :
2. Print version: :
~РУБ DDC 515/.357
Рубрики: Inverse problems (Differential equations)
Carleman theorem.
Identifikationsverfahren.
Inverses Problem.
Numerische Mathematik.
Аннотация: This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
Доп.точки доступа:
Li, Jingzhi, \author.\
K 56
Klibanov, (Michael V.),.
Inverse Problems and Carleman Estimates : : Global Uniqueness, Global Convergence and Experimental Data / / Michael V. Klibanov, Jingzhi Li. - 1515/9783110745481. - Berlin ; ; Boston : : De Gruyter,, ©2021. - 1 online resource (XVI, 328 p.). ( час. мин.), 1515/9783110745481. - (Inverse and Ill-Posed Problems Series ; ; volume 63). - In English. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/1F9617F7-6E58-4E26-A925-7E3B4DD5906F. - ISBN 3110745488 (electronic book). - ISBN 9783110745481 (electronic bk.)
Description based on online resource; title from digital title page (viewed on October 06, 2021).
Параллельные издания:
1. Print version: :
2. Print version: :
Рубрики: Inverse problems (Differential equations)
Carleman theorem.
Identifikationsverfahren.
Inverses Problem.
Numerische Mathematik.
Аннотация: This book summarizes the main analytical and numerical results of Carleman estimates. In the analytical part, Carleman estimates for three main types of Partial Differential Equations (PDEs) are derived. In the numerical part, first numerical methods are proposed to solve ill-posed Cauchy problems for both linear and quasilinear PDEs. Next, various versions of the convexification method are developed for a number of Coefficient Inverse Problems.
Доп.точки доступа:
Li, Jingzhi, \author.\
2.
Подробнее
DDC 515.357
L 31
Large scale inverse problems : : computational methods and applications in the earth sciences / / edited by Mike Cullen, Melina A. Freitag, Stefan Kindermann, Robert Scheichl. - Berlin ; ; Boston : : De Gruyter,, ©2013. - 1 online resource (ix, 203 pages) : : il. - (Radon Series on Computational and Applied Mathematics). - English. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/FD27C70C-43D8-4817-B780-1EA6D58FA8AF. - ISBN 9783110282269 (electronic bk.). - ISBN 3110282267 (electronic bk.). - ISBN 3110282224. - ISBN 9783110282221
Print version record.
Параллельные издания: Print version: : Scheichl, Robert. Large Scale Inverse Problems : Computational Methods and Applications in the Earth Sciences. - Berlin : De Gruyter, ©2013. - ISBN 9783110282221
Содержание:
Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation.
2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes.
2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging.
2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models.
The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors.
~РУБ DDC 515.357
Рубрики: Inverse problems (Differential equations)
Applied mathematics.
MATHEMATICS--Calculus.
MATHEMATICS--Mathematical Analysis.
Inverse problems (Differential equations)
Аннотация: This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.
Доп.точки доступа:
Cullen, Michael J. P., \editor.\
Freitag, Melina A., (1980-) \editor.\
Kindermann, Stefan, (1972-) \editor.\
Scheichl, Robert, (1972-) \editor.\
L 31
Large scale inverse problems : : computational methods and applications in the earth sciences / / edited by Mike Cullen, Melina A. Freitag, Stefan Kindermann, Robert Scheichl. - Berlin ; ; Boston : : De Gruyter,, ©2013. - 1 online resource (ix, 203 pages) : : il. - (Radon Series on Computational and Applied Mathematics). - English. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/FD27C70C-43D8-4817-B780-1EA6D58FA8AF. - ISBN 9783110282269 (electronic bk.). - ISBN 3110282267 (electronic bk.). - ISBN 3110282224. - ISBN 9783110282221
Print version record.
Параллельные издания: Print version: : Scheichl, Robert. Large Scale Inverse Problems : Computational Methods and Applications in the Earth Sciences. - Berlin : De Gruyter, ©2013. - ISBN 9783110282221
Содержание:
Preface; Synergy of inverse problems and data assimilation techniques; 1 Introduction; 2 Regularization theory; 3 Cycling, Tikhonov regularization and 3DVar; 4 Error analysis; 5 Bayesian approach to inverse problems; 6 4DVar; 7 Kalman filter and Kalman smoother; 8 Ensemble methods; 9 Numerical examples; 9.1 Data assimilation for an advection-diffusion system; 9.2 Data assimilation for the Lorenz-95 system; 10 Concluding remarks; Variational data assimilation for very large environmental problems; 1 Introduction; 2 Theory of variational data assimilation.
2.1 Incremental variational data assimilation3 Practical implementation; 3.1 Model development; 3.2 Background error covariances; 3.3 Observation errors; 3.4 Optimization methods; 3.5 Reduced order approaches; 3.6 Issues for nested models; 3.7 Weak-constraint variational assimilation; 4 Summary and future perspectives; Ensemble filter techniques for intermittent data assimilation; 1 Bayesian statistics; 1.1 Preliminaries; 1.2 Bayesian inference; 1.3 Coupling of random variables; 1.4 Monte Carlo methods; 2 Stochastic processes; 2.1 Discrete time Markov processes.
2.2 Stochastic difference and differential equations2.3 Ensemble prediction and sampling methods; 3 Data assimilation and filtering; 3.1 Preliminaries; 3.2 SequentialMonte Carlo method; 3.3 Ensemble Kalman filter (EnKF); 3.4 Ensemble transform Kalman-Bucy filter; 3.5 Guided sequential Monte Carlo methods; 3.6 Continuous ensemble transform filter formulations; 4 Concluding remarks; Inverse problems in imaging; 1 Mathematicalmodels for images; 2 Examples of imaging devices; 2.1 Optical imaging; 2.2 Transmission tomography; 2.3 Emission tomography; 2.4 MR imaging; 2.5 Acoustic imaging.
2.6 Electromagnetic imaging3 Basic image reconstruction; 3.1 Deblurring and point spread functions; 3.2 Noise; 3.3 Reconstruction methods; 4 Missing data and prior information; 4.1 Prior information; 4.2 Undersampling and superresolution; 4.3 Inpainting; 4.4 Surface imaging; 5 Calibration problems; 5.1 Blind deconvolution; 5.2 Nonlinear MR imaging; 5.3 Attenuation correction in SPECT; 5.4 Blind spectral unmixing; 6 Model-based dynamic imaging; 6.1 Kinetic models; 6.2 Parameter identification; 6.3 Basis pursuit; 6.4 Motion and deformation models; 6.5 Advanced PDE models.
The lost honor of l2-based regularization1 Introduction; 2 l1-based regularization; 3 Poor data; 4 Large, highly ill-conditioned problems; 4.1 Inverse potential problem; 4.2 The effect of ill-conditioning on L1 regularization; 4.3 Nonlinear, highly ill-posed examples; 5 Summary; List of contributors.
Рубрики: Inverse problems (Differential equations)
Applied mathematics.
MATHEMATICS--Calculus.
MATHEMATICS--Mathematical Analysis.
Inverse problems (Differential equations)
Аннотация: This book is thesecond volume of three volume series recording the ""Radon Special Semester 2011 on Multiscale Simulation & Analysis in Energy and the Environment"" taking place in Linz, Austria, October 3-7, 2011. The volume addresses the common ground in the mathematical and computational procedures required for large-scale inverse problems and data assimilation in forefront applications.
Доп.точки доступа:
Cullen, Michael J. P., \editor.\
Freitag, Melina A., (1980-) \editor.\
Kindermann, Stefan, (1972-) \editor.\
Scheichl, Robert, (1972-) \editor.\
Page 1, Results: 2