Electronic catalog

el cat en


 

База данных: ELS EBSCO eBook

Page 1, Results: 55

Отмеченные записи: 0

DDC 620.00285/631
D 30


    Deep learning applications and intelligent decision making in engineering / / Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani and Ravi Samikannu, editors. - Hershey, PA : : Engineering Science Reference,, [2021]. - 1 online resource. - (Advances in computational intelligence and robotics (ACIR) book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DD4291CF-FE4E-4162-A82D-E90DC0784967. - ISBN 1799821102 (electronic book). - ISBN 9781799821106 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 19, 2020).
Параллельные издания: Print version: : Deep learning applications and intelligent decision making in engineering. - Hershey, PA : Engineering Science Reference, 2020. - ISBN 9781799821083

~РУБ DDC 620.00285/631

Рубрики: Engineering--Data processing.

   Computational intelligence.


   Machine learning.


   Smart materials.


   Computational intelligence.


   Engineering--Data processing.


   Machine learning.


   Smart materials.


Аннотация: "This book explores the application of deep learning in building a smart world, ranging from smart cities, smart agriculture to smart homes"--

Доп.точки доступа:
Senthilnathan, Karthikrajan, (1991-) \editor.\
Shanmugam, Balamurugan, (1985-) \editor.\
Goyal, Dinesh, (1976-) \editor.\
Annapoorani, Iyswarya, (1976-) \editor.\
Samikannu, Ravi, (1982-) \editor.\

Deep learning applications and intelligent decision making in engineering / [Электронный ресурс] / Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani and Ravi Samikannu, editors., [2021]. - 1 online resource. с.

1.

Deep learning applications and intelligent decision making in engineering / [Электронный ресурс] / Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani and Ravi Samikannu, editors., [2021]. - 1 online resource. с.


DDC 620.00285/631
D 30


    Deep learning applications and intelligent decision making in engineering / / Karthikrajan Senthilnathan, Balamurugan Shanmugam, Dinesh Goyal, Iyswarya Annapoorani and Ravi Samikannu, editors. - Hershey, PA : : Engineering Science Reference,, [2021]. - 1 online resource. - (Advances in computational intelligence and robotics (ACIR) book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DD4291CF-FE4E-4162-A82D-E90DC0784967. - ISBN 1799821102 (electronic book). - ISBN 9781799821106 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 19, 2020).
Параллельные издания: Print version: : Deep learning applications and intelligent decision making in engineering. - Hershey, PA : Engineering Science Reference, 2020. - ISBN 9781799821083

~РУБ DDC 620.00285/631

Рубрики: Engineering--Data processing.

   Computational intelligence.


   Machine learning.


   Smart materials.


   Computational intelligence.


   Engineering--Data processing.


   Machine learning.


   Smart materials.


Аннотация: "This book explores the application of deep learning in building a smart world, ranging from smart cities, smart agriculture to smart homes"--

Доп.точки доступа:
Senthilnathan, Karthikrajan, (1991-) \editor.\
Shanmugam, Balamurugan, (1985-) \editor.\
Goyal, Dinesh, (1976-) \editor.\
Annapoorani, Iyswarya, (1976-) \editor.\
Samikannu, Ravi, (1982-) \editor.\

DDC 630.2085
S 68


    Smart agricultural services using deep learning, big data, and IoT / / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma. - Hershey, PA : : Engineering Science Reference, an imprint of IGI Global,, [2021]. - 1 online resource. - (Advances in environmental engineering and green technologies (AEEGT) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/FAB88504-AE18-4A42-98A4-540E4ED27C05. - ISBN 1799850048 (electronic book). - ISBN 9781799850045 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 25, 2020).
Параллельные издания: Print version: : Smart agricultural services using deep learning, big data, and IoT. - Hershey, PA : Engineering Science Reference, an imprint of IGI Global, [2021]. - ISBN 9781799850038
    Содержание:
Chapter 1. A neural network-based approach for pest detection and control in modern agriculture using Internet of things -- Chapter 2. Automated fruit grading system using image fusion -- Chapter 3. Fog computing as solution for IoT-based agricultural applications -- Chapter 4. Green cloud -- Chapter 5. Internet of things: a conceptual visualisation -- Chapter 6. Internet of things and the role of wireless sensor networks in IoT -- Chapter 7. IoT-based agri-safety model: mechanised agricultural fencing -- Chapter 8. Plant diseases concept in smart agriculture using deep learning -- Chapter 9. Smart agriculture and farming services using IoT -- Chapter 10. Smart agriculture services using deep learning, big data, and IoT (Internet of things) -- Chapter 11. An analysis of big data analytics -- Chapter 12. Towards intelligent agriculture using smart IoT sensors.

~РУБ DDC 630.2085

Рубрики: Agricultural informatics.

   Artificial intelligence--Agricultural applications.


   Internet of things.


   Machine learning.


   Big data.


   Agricultural informatics.


   Artificial intelligence--Agricultural applications.


   Big data.


   Internet of things.


   Machine learning.


Аннотация: "This book explores the application of deep learning, big data, IoT in agricultural services"--

Доп.точки доступа:
Gupta, Amit Kumar, (1981-) \editor.\

Smart agricultural services using deep learning, big data, and IoT / [Электронный ресурс] / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma., [2021]. - 1 online resource. с. (Введено оглавление)

2.

Smart agricultural services using deep learning, big data, and IoT / [Электронный ресурс] / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma., [2021]. - 1 online resource. с. (Введено оглавление)


DDC 630.2085
S 68


    Smart agricultural services using deep learning, big data, and IoT / / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma. - Hershey, PA : : Engineering Science Reference, an imprint of IGI Global,, [2021]. - 1 online resource. - (Advances in environmental engineering and green technologies (AEEGT) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/FAB88504-AE18-4A42-98A4-540E4ED27C05. - ISBN 1799850048 (electronic book). - ISBN 9781799850045 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 25, 2020).
Параллельные издания: Print version: : Smart agricultural services using deep learning, big data, and IoT. - Hershey, PA : Engineering Science Reference, an imprint of IGI Global, [2021]. - ISBN 9781799850038
    Содержание:
Chapter 1. A neural network-based approach for pest detection and control in modern agriculture using Internet of things -- Chapter 2. Automated fruit grading system using image fusion -- Chapter 3. Fog computing as solution for IoT-based agricultural applications -- Chapter 4. Green cloud -- Chapter 5. Internet of things: a conceptual visualisation -- Chapter 6. Internet of things and the role of wireless sensor networks in IoT -- Chapter 7. IoT-based agri-safety model: mechanised agricultural fencing -- Chapter 8. Plant diseases concept in smart agriculture using deep learning -- Chapter 9. Smart agriculture and farming services using IoT -- Chapter 10. Smart agriculture services using deep learning, big data, and IoT (Internet of things) -- Chapter 11. An analysis of big data analytics -- Chapter 12. Towards intelligent agriculture using smart IoT sensors.

~РУБ DDC 630.2085

Рубрики: Agricultural informatics.

   Artificial intelligence--Agricultural applications.


   Internet of things.


   Machine learning.


   Big data.


   Agricultural informatics.


   Artificial intelligence--Agricultural applications.


   Big data.


   Internet of things.


   Machine learning.


Аннотация: "This book explores the application of deep learning, big data, IoT in agricultural services"--

Доп.точки доступа:
Gupta, Amit Kumar, (1981-) \editor.\

DDC 616.8/0475
E 11


    Early detection of neurological disorders using machine learning systems / / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors. - Hershey, PA : : Medical Information Science Reference,, ©2019. - 1 online resource : : il. - (Advances in medical technologies and clinical practice book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/41AA37F5-CB4C-46F3-8B1D-D885B2FB8422. - ISBN 9781522585688 (electronic bk.). - ISBN 1522585680 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Early detection of neurological disorders using machine learning systems. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781522585671
    Содержание:
Epileptic seizure detection and classification using machine learning -- Rekh Janghel, Yogesh Rathore, Gautam Tiparti -- A study on basal ganglia circuit and its relation with movement disorders / Ankita Tiwari, Raghuvendra Tripathi, Dinesh Bhatia -- Social media analytics to predict depression level in the users / Mohammad Shahid Husain -- Tremor identification using machine learning in Parkinson's disease -- Angana Saikia, Vinayak Majhi, Masaraf Hussain, Sudip Paul, Amitava Datta -- Soft computing based early detection of Parkinson's disease using non-invasive method based on speech analysis / Chandrasekar Ravi -- Neurofeedback -retrain the brain / Meena Gupta, Dinesh Bhatia -- Neurocognitive mechanisms for detecting early phase of depressive disorder analysis of event related potentials in human brain / Shashikanta Tarai -- Intelligent big data analytics in health : big data analytics in health / Ebru Bayrak, Pinar Kirci -- Motor imagery classification using EEG signals for brain computer interface applications / Subrota Mazumdar, Rohit Chaudharya, Suruchi Suruchi, Suman Mohanty, Divya Kumari, Aleena Swetapadma -- Mapping the intellectual structure of the field neurological disorders : a bibliometric analysis / S. Ravikmar -- Medical image segmentation an advanced approach / Ramgopal Kashyapdia.

~РУБ DDC 616.8/0475

Рубрики: Nervous system--Diseases--Diagnosis.

   Machine learning.


   Diagnosis--Data processing.


   Nervous System Diseases--diagnosis.


   Machine Learning.


   Diagnosis, Computer-Assisted.


   Big Data.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book examines the role of machine learning systems in the detection of neurological disorders such as Alzheimer disease, Parkinson's disease, schizophrenia, and depression"--Provided by publisher.

Доп.точки доступа:
Paul, Sudip, (1984-) \editor.\
Bhattacharya, Pallab, (1978-) \editor.\
Bit, Arindam, (1985-) \editor.\

Early detection of neurological disorders using machine learning systems / [Электронный ресурс] / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors., ©2019. - 1 online resource : с. (Введено оглавление)

3.

Early detection of neurological disorders using machine learning systems / [Электронный ресурс] / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors., ©2019. - 1 online resource : с. (Введено оглавление)


DDC 616.8/0475
E 11


    Early detection of neurological disorders using machine learning systems / / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors. - Hershey, PA : : Medical Information Science Reference,, ©2019. - 1 online resource : : il. - (Advances in medical technologies and clinical practice book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/41AA37F5-CB4C-46F3-8B1D-D885B2FB8422. - ISBN 9781522585688 (electronic bk.). - ISBN 1522585680 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Early detection of neurological disorders using machine learning systems. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781522585671
    Содержание:
Epileptic seizure detection and classification using machine learning -- Rekh Janghel, Yogesh Rathore, Gautam Tiparti -- A study on basal ganglia circuit and its relation with movement disorders / Ankita Tiwari, Raghuvendra Tripathi, Dinesh Bhatia -- Social media analytics to predict depression level in the users / Mohammad Shahid Husain -- Tremor identification using machine learning in Parkinson's disease -- Angana Saikia, Vinayak Majhi, Masaraf Hussain, Sudip Paul, Amitava Datta -- Soft computing based early detection of Parkinson's disease using non-invasive method based on speech analysis / Chandrasekar Ravi -- Neurofeedback -retrain the brain / Meena Gupta, Dinesh Bhatia -- Neurocognitive mechanisms for detecting early phase of depressive disorder analysis of event related potentials in human brain / Shashikanta Tarai -- Intelligent big data analytics in health : big data analytics in health / Ebru Bayrak, Pinar Kirci -- Motor imagery classification using EEG signals for brain computer interface applications / Subrota Mazumdar, Rohit Chaudharya, Suruchi Suruchi, Suman Mohanty, Divya Kumari, Aleena Swetapadma -- Mapping the intellectual structure of the field neurological disorders : a bibliometric analysis / S. Ravikmar -- Medical image segmentation an advanced approach / Ramgopal Kashyapdia.

~РУБ DDC 616.8/0475

Рубрики: Nervous system--Diseases--Diagnosis.

   Machine learning.


   Diagnosis--Data processing.


   Nervous System Diseases--diagnosis.


   Machine Learning.


   Diagnosis, Computer-Assisted.


   Big Data.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book examines the role of machine learning systems in the detection of neurological disorders such as Alzheimer disease, Parkinson's disease, schizophrenia, and depression"--Provided by publisher.

Доп.точки доступа:
Paul, Sudip, (1984-) \editor.\
Bhattacharya, Pallab, (1978-) \editor.\
Bit, Arindam, (1985-) \editor.\

DDC 616.07/54
D 30


    Deep learning applications in medical imaging / / [edited by] Sanjay Saxena, Sudip Paul. - 4018/978-1-7998-5071-7. - Hershey, PA : : IGI Global, Medical Information Science Reference,, [2021]. - 1 online resource : : il ( час. мин.), 4018/978-1-7998-5071-7. - (Advances in medical technologies and clinical practice (AMTCP) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/0C4AA233-F5C0-481B-BFC4-9D4470DBE825. - ISBN 1799850722 (electronic book). - ISBN 9781799850724 (electronic bk.)
"Premier Reference Source" -- Cover. Description based on online resource; title from digital title page (viewed on February 24, 2021).
Параллельные издания: Print version: : Deep learning applications in medical imaging. - Hershey, PA : Medical Information Science Reference, [2021]. - ISBN 9781799850717
    Содержание:
Relevance of Machine Learning to Cardiovascular Imaging / Sumesh Sasidharan, Mohammad Salmasi, Selene Pirola, Omar Jarral -- Deep Learning Applications in Medical Imaging : Artificial Intelligence, Machine Learning and Deep Learning / S. Sasikala, S.J. Subhashini, P. Alli, J. Jane Rubel Angelina -- A Survey on Prematurity Detection of Diabetic Retinopathy Based on Fundus Images using Deep Learning Techniques / Amiya Dash, Puspanjali Mohapatra -- Malaria Parasites Detection Using Deep Neural Network / Biswajit Jena, Pulkit Thakar, Vedanta Nayak, Gopal Nayak, Sanjay Saxena -- Deep Learning for Medical Image Segmentation / Kanchan Sarkar, Bohang Li -- Current Trends in Integrating the Concept of Deep Learning in Medical Imaging / Kavitha S. Velammal, Anchitaalagammai J.V., S Murali, Grace Shalini T. -- A CONVblock For Convolutional Neural Networks / Hmidi Alaeddine, Malek Jihene -- Machine Learning for Prediction of Lung Cancer / Nikita Banerjee, Subhalaxmi Das -- Conventional and Non Conventional ANN's in Medical Diagnostics A Tutorial Survey of Architectures, Algorithms and Application / Devika G., Asha Karegowda.

~РУБ DDC 616.07/54

Рубрики: Diagnostic imaging.

   Machine learning.


   Diagnostic Imaging.


   Deep Learning.


   Medical Informatics Applications.


   Image Processing, Computer-Assisted.


   Diagnostic imaging--Digital techniques


   Machine learning


   Medical informatics


Аннотация: "This book explores the application deep learning in medical imaging"--

Доп.точки доступа:
Saxena, Sanjay, (1986-) \editor.\
Paul, Sudip, (1984-) \editor.\

Deep learning applications in medical imaging / [Электронный ресурс] / [edited by] Sanjay Saxena, Sudip Paul., [2021]. - 1 online resource : с. (Введено оглавление)

4.

Deep learning applications in medical imaging / [Электронный ресурс] / [edited by] Sanjay Saxena, Sudip Paul., [2021]. - 1 online resource : с. (Введено оглавление)


DDC 616.07/54
D 30


    Deep learning applications in medical imaging / / [edited by] Sanjay Saxena, Sudip Paul. - 4018/978-1-7998-5071-7. - Hershey, PA : : IGI Global, Medical Information Science Reference,, [2021]. - 1 online resource : : il ( час. мин.), 4018/978-1-7998-5071-7. - (Advances in medical technologies and clinical practice (AMTCP) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/0C4AA233-F5C0-481B-BFC4-9D4470DBE825. - ISBN 1799850722 (electronic book). - ISBN 9781799850724 (electronic bk.)
"Premier Reference Source" -- Cover. Description based on online resource; title from digital title page (viewed on February 24, 2021).
Параллельные издания: Print version: : Deep learning applications in medical imaging. - Hershey, PA : Medical Information Science Reference, [2021]. - ISBN 9781799850717
    Содержание:
Relevance of Machine Learning to Cardiovascular Imaging / Sumesh Sasidharan, Mohammad Salmasi, Selene Pirola, Omar Jarral -- Deep Learning Applications in Medical Imaging : Artificial Intelligence, Machine Learning and Deep Learning / S. Sasikala, S.J. Subhashini, P. Alli, J. Jane Rubel Angelina -- A Survey on Prematurity Detection of Diabetic Retinopathy Based on Fundus Images using Deep Learning Techniques / Amiya Dash, Puspanjali Mohapatra -- Malaria Parasites Detection Using Deep Neural Network / Biswajit Jena, Pulkit Thakar, Vedanta Nayak, Gopal Nayak, Sanjay Saxena -- Deep Learning for Medical Image Segmentation / Kanchan Sarkar, Bohang Li -- Current Trends in Integrating the Concept of Deep Learning in Medical Imaging / Kavitha S. Velammal, Anchitaalagammai J.V., S Murali, Grace Shalini T. -- A CONVblock For Convolutional Neural Networks / Hmidi Alaeddine, Malek Jihene -- Machine Learning for Prediction of Lung Cancer / Nikita Banerjee, Subhalaxmi Das -- Conventional and Non Conventional ANN's in Medical Diagnostics A Tutorial Survey of Architectures, Algorithms and Application / Devika G., Asha Karegowda.

~РУБ DDC 616.07/54

Рубрики: Diagnostic imaging.

   Machine learning.


   Diagnostic Imaging.


   Deep Learning.


   Medical Informatics Applications.


   Image Processing, Computer-Assisted.


   Diagnostic imaging--Digital techniques


   Machine learning


   Medical informatics


Аннотация: "This book explores the application deep learning in medical imaging"--

Доп.точки доступа:
Saxena, Sanjay, (1986-) \editor.\
Paul, Sudip, (1984-) \editor.\

DDC 616.07/54
A 28


    AI innovation in medical imaging diagnostics / / Kalaivani Anbarasan, editor. - Hershey, PA : : Medical Information Science Reference,, [2020]. - 1 online resource. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/05B9794F-19B2-4EA7-B91F-B6E902D72FC7. - ISBN 1799830934. - ISBN 9781799830931 (electronic bk.)
Print version record and CIP data provided by publisher; resource not viewed.
Параллельные издания: Print version: : AI innovation in medical imaging diagnostics. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781799830924
    Содержание:
Ant colony optimization (ACO) based improved edge detection algorithm for segmentation of brain tumor / Devi Thiyagarajan, Deepa Narayanan -- Intelligent mental health analyzer by biofeedback : app and analysis / Rohit Rastogi, Devendra Chaturvedi, Mayank Gupta -- Deep learning based assistive healthcare application for cervical cytology diagnosis and prognosis / Elakkiya, R. -- Detection of tumor from brain MRI images using supervised and unsupervised methods / Kannan, S., Anusuya, S. -- Deep learning based Parkinson's disease prediction system / Padmapriya, G., Elakkiya, R., Aruna, M., Arthi, B. -- A novel method to diagnos the epileptic seizure using machine learning algorithms and scalp EEG signals / Rashmita Khilar -- An automated computer diagnosis system for women breast cancer using deep learning / Kalaivani Anbarasan, Charlyn Puspalatha -- Artificial intelligence perspective on precision medicine / Rehab A. Rayan -- Intracranial hemorrahage detection using convolutional neural network / M. Raja Suguna -- Machine learning algorithm for medical image analysis / M. Vinoth Kumar, G. Padmapriya -- Machine learning in health care / Debasree Mitra, Apurba Paul, Sumanta Chatterjee.

~РУБ DDC 616.07/54

Рубрики: Artificial Intelligence.

   Diagnostic Imaging--methods.


   Deep Learning.


   Machine Learning.


   Artificial intelligence.


   Diagnostic imaging.


Аннотация: "This book examines the application of artificial intelligence in medical imaging diagnostics"--

Доп.точки доступа:
Anbarasan, Kalaivani, (1975-) \editor.\

AI innovation in medical imaging diagnostics / [Электронный ресурс] / Kalaivani Anbarasan, editor., [2020]. - 1 online resource с. (Введено оглавление)

5.

AI innovation in medical imaging diagnostics / [Электронный ресурс] / Kalaivani Anbarasan, editor., [2020]. - 1 online resource с. (Введено оглавление)


DDC 616.07/54
A 28


    AI innovation in medical imaging diagnostics / / Kalaivani Anbarasan, editor. - Hershey, PA : : Medical Information Science Reference,, [2020]. - 1 online resource. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/05B9794F-19B2-4EA7-B91F-B6E902D72FC7. - ISBN 1799830934. - ISBN 9781799830931 (electronic bk.)
Print version record and CIP data provided by publisher; resource not viewed.
Параллельные издания: Print version: : AI innovation in medical imaging diagnostics. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781799830924
    Содержание:
Ant colony optimization (ACO) based improved edge detection algorithm for segmentation of brain tumor / Devi Thiyagarajan, Deepa Narayanan -- Intelligent mental health analyzer by biofeedback : app and analysis / Rohit Rastogi, Devendra Chaturvedi, Mayank Gupta -- Deep learning based assistive healthcare application for cervical cytology diagnosis and prognosis / Elakkiya, R. -- Detection of tumor from brain MRI images using supervised and unsupervised methods / Kannan, S., Anusuya, S. -- Deep learning based Parkinson's disease prediction system / Padmapriya, G., Elakkiya, R., Aruna, M., Arthi, B. -- A novel method to diagnos the epileptic seizure using machine learning algorithms and scalp EEG signals / Rashmita Khilar -- An automated computer diagnosis system for women breast cancer using deep learning / Kalaivani Anbarasan, Charlyn Puspalatha -- Artificial intelligence perspective on precision medicine / Rehab A. Rayan -- Intracranial hemorrahage detection using convolutional neural network / M. Raja Suguna -- Machine learning algorithm for medical image analysis / M. Vinoth Kumar, G. Padmapriya -- Machine learning in health care / Debasree Mitra, Apurba Paul, Sumanta Chatterjee.

~РУБ DDC 616.07/54

Рубрики: Artificial Intelligence.

   Diagnostic Imaging--methods.


   Deep Learning.


   Machine Learning.


   Artificial intelligence.


   Diagnostic imaging.


Аннотация: "This book examines the application of artificial intelligence in medical imaging diagnostics"--

Доп.точки доступа:
Anbarasan, Kalaivani, (1975-) \editor.\

DDC 616.1/207547
M 78

Moein, Sara, (1983-).
    Electrocardiogram signal classification and machine learning : : emerging research and opportunities / / by Sara Moein. - Hershey PA : : IGI Global, Medical Information Science Reference,, [2018]. - 1 online resource. - (Advances in medical technologies and clinical practice (AMTCP) book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/0CF035A4-17D0-4997-BE84-1E93B8D85D68. - ISBN 9781522555810 (electronic bk.). - ISBN 1522555811 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Moein, Sara, 1983- Electrocardiogram signal classification and machine learning. - Hershey PA : Medical Information Science Reference, [2018]. - ISBN 9781522555803
    Содержание:
Medical diagnosis -- Introduction on heart -- Background -- Methodology -- Kinetic gas molecule optimisation (KGMO) -- Classification and feature extraction -- Conclusion.

~РУБ DDC 616.1/207547

Рубрики: Electrocardiography.

   Signal processing--Digital techniques.


   Machine learning.


   Heart--Diseases--Diagnosis.


   Pattern recognition systems.


   Electrocardiography--methods.


   Signal Processing, Computer-Assisted.


   Machine Learning.


   Heart Diseases--diagnosis.


   Pattern Recognition, Automated.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book develops an intelligent system to classify electrocardiogram signal classification signals for 4 common heart disorders, which are supraventricular tachycardia, bundle branch block, anterior myocardial infarction (Anterior MI), and inferior myocardial infarction (Inferior MI) as well as the normal healthy class"--Provided by publisher.

Moein, Sara,. Electrocardiogram signal classification and machine learning : [Электронный ресурс] : emerging research and opportunities / / by Sara Moein., [2018]. - 1 online resource. с. (Введено оглавление)

6.

Moein, Sara,. Electrocardiogram signal classification and machine learning : [Электронный ресурс] : emerging research and opportunities / / by Sara Moein., [2018]. - 1 online resource. с. (Введено оглавление)


DDC 616.1/207547
M 78

Moein, Sara, (1983-).
    Electrocardiogram signal classification and machine learning : : emerging research and opportunities / / by Sara Moein. - Hershey PA : : IGI Global, Medical Information Science Reference,, [2018]. - 1 online resource. - (Advances in medical technologies and clinical practice (AMTCP) book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/0CF035A4-17D0-4997-BE84-1E93B8D85D68. - ISBN 9781522555810 (electronic bk.). - ISBN 1522555811 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Moein, Sara, 1983- Electrocardiogram signal classification and machine learning. - Hershey PA : Medical Information Science Reference, [2018]. - ISBN 9781522555803
    Содержание:
Medical diagnosis -- Introduction on heart -- Background -- Methodology -- Kinetic gas molecule optimisation (KGMO) -- Classification and feature extraction -- Conclusion.

~РУБ DDC 616.1/207547

Рубрики: Electrocardiography.

   Signal processing--Digital techniques.


   Machine learning.


   Heart--Diseases--Diagnosis.


   Pattern recognition systems.


   Electrocardiography--methods.


   Signal Processing, Computer-Assisted.


   Machine Learning.


   Heart Diseases--diagnosis.


   Pattern Recognition, Automated.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book develops an intelligent system to classify electrocardiogram signal classification signals for 4 common heart disorders, which are supraventricular tachycardia, bundle branch block, anterior myocardial infarction (Anterior MI), and inferior myocardial infarction (Inferior MI) as well as the normal healthy class"--Provided by publisher.

DDC 006.3/5
R 33

Reese, Richard Martin, (1953-).
    Natural language processing with Java : : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia. - Second edition. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - (Community experience distilled). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/208C26CA-E05E-4508-9CD4-84D44FC266D9. - ISBN 9781788993067 (electronic bk.). - ISBN 1788993063 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed August 27, 2018).

~РУБ DDC 006.3/5

Рубрики: Natural language processing (Computer science)

   Java (Computer program language)


   Machine learning.


   Neural networks (Computer science)


   COMPUTERS / General.



Доп.точки доступа:
Bhatia, AshishSingh, \author.\

Reese, Richard Martin,. Natural language processing with Java : [Электронный ресурс] : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia., 2018. - 1 online resource (1 volume) : с.

7.

Reese, Richard Martin,. Natural language processing with Java : [Электронный ресурс] : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia., 2018. - 1 online resource (1 volume) : с.


DDC 006.3/5
R 33

Reese, Richard Martin, (1953-).
    Natural language processing with Java : : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia. - Second edition. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - (Community experience distilled). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/208C26CA-E05E-4508-9CD4-84D44FC266D9. - ISBN 9781788993067 (electronic bk.). - ISBN 1788993063 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed August 27, 2018).

~РУБ DDC 006.3/5

Рубрики: Natural language processing (Computer science)

   Java (Computer program language)


   Machine learning.


   Neural networks (Computer science)


   COMPUTERS / General.



Доп.точки доступа:
Bhatia, AshishSingh, \author.\

DDC 006.31
B 76

Bonaccorso, Giuseppe.
    Machine Learning Algorithms : : Popular Algorithms for Data Science and Machine Learning, 2nd Edition. / Giuseppe. Bonaccorso. - 2nd ed. - Birmingham : : Packt Publishing Ltd,, 2018. - 1 online resource (514 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/D9D16600-8F9C-45A4-B8EC-B980EF369FE7. - ISBN 9781789345483. - ISBN 1789345480
Introducing semi-supervised Support Vector Machines (S3VM). Print version record.
Параллельные издания: Print version: : Bonaccorso, Giuseppe. Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning, 2nd Edition. - Birmingham : Packt Publishing Ltd, ©2018. - ISBN 9781789347999
    Содержание:
Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: A Gentle Introduction to Machine Learning; Introduction -- classic and adaptive machines; Descriptive analysis; Predictive analysis; Only learning matters; Supervised learning; Unsupervised learning; Semi-supervised learning; Reinforcement learning; Computational neuroscience; Beyond machine learning -- deep learning and bio-inspired adaptive systems; Machine learning and big data; Summary; Chapter 2: Important Elements in Machine Learning; Data formats; Multiclass strategies.
One-vs-allOne-vs-one; Learnability; Underfitting and overfitting; Error measures and cost functions; PAC learning; Introduction to statistical learning concepts; MAP learning; Maximum likelihood learning; Class balancing; Resampling with replacement; SMOTE resampling; Elements of information theory; Entropy; Cross-entropy and mutual information ; Divergence measures between two probability distributions; Summary; Chapter 3: Feature Selection and Feature Engineering; scikit-learn toy datasets; Creating training and test sets; Managing categorical data; Managing missing features.
Data scaling and normalizationWhitening; Feature selection and filtering; Principal Component Analysis; Non-Negative Matrix Factorization; Sparse PCA; Kernel PCA; Independent Component Analysis; Atom extraction and dictionary learning; Visualizing high-dimensional datasets using t-SNE; Summary; Chapter 4: Regression Algorithms; Linear models for regression; A bidimensional example; Linear regression with scikit-learn and higher dimensionality; R2 score; Explained variance; Regressor analytic expression; Ridge, Lasso, and ElasticNet; Ridge; Lasso; ElasticNet; Robust regression; RANSAC.
Huber regressionBayesian regression; Polynomial regression; Isotonic regression; Summary; Chapter 5: Linear Classification Algorithms; Linear classification; Logistic regression; Implementation and optimizations; Stochastic gradient descent algorithms; Passive-aggressive algorithms; Passive-aggressive regression; Finding the optimal hyperparameters through a grid search; Classification metrics; Confusion matrix; Precision; Recall; F-Beta; Cohen's Kappa; Global classification report; Learning curve; ROC curve; Summary; Chapter 6: Naive Bayes and Discriminant Analysis; Bayes' theorem.

~РУБ DDC 006.31

Рубрики: Computers--Intelligence (AI) & Semantics.

   Computers--Data Modeling & Design.


   Database design & theory.


   Artificial intelligence.


   Machine learning.


   Information architecture.


   Computers--Machine Theory.


   Mathematical theory of computation.


   Machine learning.


   Computer algorithms.


   Computer algorithms.


   Machine learning.


Аннотация: Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. This book will act as an entry point for anyone who wants to make a career in Machine Learning. It covers algorithms like Linear regression, Logistic Regression, SVM, Naïve Bayes, K-Means, Random Forest, and Feature engineering.

Bonaccorso, Giuseppe. Machine Learning Algorithms : [Электронный ресурс] : Popular Algorithms for Data Science and Machine Learning, 2nd Edition. / Giuseppe. Bonaccorso, 2018. - 1 online resource (514 pages) с. (Введено оглавление)

8.

Bonaccorso, Giuseppe. Machine Learning Algorithms : [Электронный ресурс] : Popular Algorithms for Data Science and Machine Learning, 2nd Edition. / Giuseppe. Bonaccorso, 2018. - 1 online resource (514 pages) с. (Введено оглавление)


DDC 006.31
B 76

Bonaccorso, Giuseppe.
    Machine Learning Algorithms : : Popular Algorithms for Data Science and Machine Learning, 2nd Edition. / Giuseppe. Bonaccorso. - 2nd ed. - Birmingham : : Packt Publishing Ltd,, 2018. - 1 online resource (514 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/D9D16600-8F9C-45A4-B8EC-B980EF369FE7. - ISBN 9781789345483. - ISBN 1789345480
Introducing semi-supervised Support Vector Machines (S3VM). Print version record.
Параллельные издания: Print version: : Bonaccorso, Giuseppe. Machine Learning Algorithms : Popular Algorithms for Data Science and Machine Learning, 2nd Edition. - Birmingham : Packt Publishing Ltd, ©2018. - ISBN 9781789347999
    Содержание:
Cover; Title Page; Copyright and Credits; Dedication; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: A Gentle Introduction to Machine Learning; Introduction -- classic and adaptive machines; Descriptive analysis; Predictive analysis; Only learning matters; Supervised learning; Unsupervised learning; Semi-supervised learning; Reinforcement learning; Computational neuroscience; Beyond machine learning -- deep learning and bio-inspired adaptive systems; Machine learning and big data; Summary; Chapter 2: Important Elements in Machine Learning; Data formats; Multiclass strategies.
One-vs-allOne-vs-one; Learnability; Underfitting and overfitting; Error measures and cost functions; PAC learning; Introduction to statistical learning concepts; MAP learning; Maximum likelihood learning; Class balancing; Resampling with replacement; SMOTE resampling; Elements of information theory; Entropy; Cross-entropy and mutual information ; Divergence measures between two probability distributions; Summary; Chapter 3: Feature Selection and Feature Engineering; scikit-learn toy datasets; Creating training and test sets; Managing categorical data; Managing missing features.
Data scaling and normalizationWhitening; Feature selection and filtering; Principal Component Analysis; Non-Negative Matrix Factorization; Sparse PCA; Kernel PCA; Independent Component Analysis; Atom extraction and dictionary learning; Visualizing high-dimensional datasets using t-SNE; Summary; Chapter 4: Regression Algorithms; Linear models for regression; A bidimensional example; Linear regression with scikit-learn and higher dimensionality; R2 score; Explained variance; Regressor analytic expression; Ridge, Lasso, and ElasticNet; Ridge; Lasso; ElasticNet; Robust regression; RANSAC.
Huber regressionBayesian regression; Polynomial regression; Isotonic regression; Summary; Chapter 5: Linear Classification Algorithms; Linear classification; Logistic regression; Implementation and optimizations; Stochastic gradient descent algorithms; Passive-aggressive algorithms; Passive-aggressive regression; Finding the optimal hyperparameters through a grid search; Classification metrics; Confusion matrix; Precision; Recall; F-Beta; Cohen's Kappa; Global classification report; Learning curve; ROC curve; Summary; Chapter 6: Naive Bayes and Discriminant Analysis; Bayes' theorem.

~РУБ DDC 006.31

Рубрики: Computers--Intelligence (AI) & Semantics.

   Computers--Data Modeling & Design.


   Database design & theory.


   Artificial intelligence.


   Machine learning.


   Information architecture.


   Computers--Machine Theory.


   Mathematical theory of computation.


   Machine learning.


   Computer algorithms.


   Computer algorithms.


   Machine learning.


Аннотация: Machine learning explores the study and construction of algorithms that can learn from and make predictions on data. This book will act as an entry point for anyone who wants to make a career in Machine Learning. It covers algorithms like Linear regression, Logistic Regression, SVM, Naïve Bayes, K-Means, Random Forest, and Feature engineering.

DDC 005.133
S 17

Saleh, Hyatt,.
    Machine learning fundamentals : : Use Python and scikit-learn to get up and running with the hottest developments in machine learning / / Hyatt Saleh. - Birmingham : : Packt Publishing,, ©2018. - 1 online resource (240 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/CE938EA4-6316-42FD-8CB4-3B924C055972. - ISBN 1789801761 (electronic bk.). - ISBN 9781789801767 (electronic bk.)
Description based upon print version of record. Supervised Learning Algorithms: Predict Annual Income
Параллельные издания: Print version: : Saleh, Hyatt Machine Learning Fundamentals : Use Python and Scikit-Learn to Get up and Running with the Hottest Developments in Machine Learning. - Birmingham : Packt Publishing Ltd,c2018. - ISBN 9781789803556
    Содержание:
Intro; Preface; Introduction to Scikit-Learn; Introduction; Scikit-Learn; Advantages of Scikit-Learn; Disadvantages of Scikit-Learn; Data Representation; Tables of Data; Features and Target Matrices; Exercise 1: Loading a Sample Dataset and Creating the Features and Target Matrices; Activity 1: Selecting a Target Feature and Creating a Target Matrix; Data Preprocessing; Messy Data; Exercise 2: Dealing with Messy Data; Dealing with Categorical Features; Exercise 3: Applying Feature Engineering over Text Data; Rescaling Data; Exercise 4: Normalizing and Standardizing Data
Activity 2: Preprocessing an Entire DatasetScikit-Learn API; How Does It Work?; Supervised and Unsupervised Learning; Supervised Learning; Unsupervised Learning; Summary; Unsupervised Learning: Real-Life Applications; Introduction; Clustering; Clustering Types; Applications of Clustering; Exploring a Dataset: Wholesale Customers Dataset; Understanding the Dataset; Data Visualization; Loading the Dataset Using Pandas; Visualization Tools; Exercise 5: Plotting a Histogram of One Feature from the Noisy Circles Dataset; Activity 3: Using Data Visualization to Aid the Preprocessing Process
K-means AlgorithmUnderstanding the Algorithm; Exercise 6: Importing and Training the k-means Algorithm over a Dataset; Activity 4: Applying the k-means Algorithm to a Dataset; Mean-Shift Algorithm; Understanding the Algorithm; Exercise 7: Importing and Training the Mean-Shift Algorithm over a Dataset; Activity 5: Applying the Mean-Shift Algorithm to a Dataset; DBSCAN Algorithm; Understanding the Algorithm; Exercise 8: Importing and Training the DBSCAN Algorithm over a Dataset; Activity 6: Applying the DBSCAN Algorithm to the Dataset; Evaluating the Performance of Clusters
Available Metrics in Scikit-LearnExercise 9: Evaluating the Silhouette Coefficient Score and Calinski-Harabasz Index; Activity 7: Measuring and Comparing the Performance of the Algorithms; Summary; Supervised Learning: Key Steps; Introduction; Model Validation and Testing; Data Partition; Split Ratio; Exercise 10: Performing Data Partition over a Sample Dataset; Cross Validation; Exercise 11: Using Cross-Validation to Partition the Train Set into a Training and a Validation Set; Activity 8: Data Partition over a Handwritten Digit Dataset; Evaluation Metrics
Evaluation Metrics for Classification TasksExercise 12: Calculating Different Evaluation Metrics over a Classification Task; Choosing an Evaluation Metric; Evaluation Metrics for Regression Tasks; Exercise 13: Calculating Evaluation Metrics over a Regression Task; Activity 9: Evaluating the Performance of the Model Trained over a Handwritten Dataset; Error Analysis; Bias, Variance, and Data Mismatch; Exercise 14: Calculating the Error Rate over Different Sets of Data; Activity 10: Performing Error Analysis over a Model Trained to Recognize Handwritten Digits; Summary

~РУБ DDC 005.133

Рубрики: Python (Computer program language)

   Machine learning.


   Artificial intelligence.


   COMPUTERS / Programming Languages / Python.


Аннотация: As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains the scikit-learn API, which is a package created to facilitate the process of building machine learning applications. By explaining the differences between supervised and unsupervised models and by ...

Saleh, Hyatt,. Machine learning fundamentals : [Электронный ресурс] : Use Python and scikit-learn to get up and running with the hottest developments in machine learning / / Hyatt Saleh., ©2018. - 1 online resource (240 p.) с. (Введено оглавление)

9.

Saleh, Hyatt,. Machine learning fundamentals : [Электронный ресурс] : Use Python and scikit-learn to get up and running with the hottest developments in machine learning / / Hyatt Saleh., ©2018. - 1 online resource (240 p.) с. (Введено оглавление)


DDC 005.133
S 17

Saleh, Hyatt,.
    Machine learning fundamentals : : Use Python and scikit-learn to get up and running with the hottest developments in machine learning / / Hyatt Saleh. - Birmingham : : Packt Publishing,, ©2018. - 1 online resource (240 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/CE938EA4-6316-42FD-8CB4-3B924C055972. - ISBN 1789801761 (electronic bk.). - ISBN 9781789801767 (electronic bk.)
Description based upon print version of record. Supervised Learning Algorithms: Predict Annual Income
Параллельные издания: Print version: : Saleh, Hyatt Machine Learning Fundamentals : Use Python and Scikit-Learn to Get up and Running with the Hottest Developments in Machine Learning. - Birmingham : Packt Publishing Ltd,c2018. - ISBN 9781789803556
    Содержание:
Intro; Preface; Introduction to Scikit-Learn; Introduction; Scikit-Learn; Advantages of Scikit-Learn; Disadvantages of Scikit-Learn; Data Representation; Tables of Data; Features and Target Matrices; Exercise 1: Loading a Sample Dataset and Creating the Features and Target Matrices; Activity 1: Selecting a Target Feature and Creating a Target Matrix; Data Preprocessing; Messy Data; Exercise 2: Dealing with Messy Data; Dealing with Categorical Features; Exercise 3: Applying Feature Engineering over Text Data; Rescaling Data; Exercise 4: Normalizing and Standardizing Data
Activity 2: Preprocessing an Entire DatasetScikit-Learn API; How Does It Work?; Supervised and Unsupervised Learning; Supervised Learning; Unsupervised Learning; Summary; Unsupervised Learning: Real-Life Applications; Introduction; Clustering; Clustering Types; Applications of Clustering; Exploring a Dataset: Wholesale Customers Dataset; Understanding the Dataset; Data Visualization; Loading the Dataset Using Pandas; Visualization Tools; Exercise 5: Plotting a Histogram of One Feature from the Noisy Circles Dataset; Activity 3: Using Data Visualization to Aid the Preprocessing Process
K-means AlgorithmUnderstanding the Algorithm; Exercise 6: Importing and Training the k-means Algorithm over a Dataset; Activity 4: Applying the k-means Algorithm to a Dataset; Mean-Shift Algorithm; Understanding the Algorithm; Exercise 7: Importing and Training the Mean-Shift Algorithm over a Dataset; Activity 5: Applying the Mean-Shift Algorithm to a Dataset; DBSCAN Algorithm; Understanding the Algorithm; Exercise 8: Importing and Training the DBSCAN Algorithm over a Dataset; Activity 6: Applying the DBSCAN Algorithm to the Dataset; Evaluating the Performance of Clusters
Available Metrics in Scikit-LearnExercise 9: Evaluating the Silhouette Coefficient Score and Calinski-Harabasz Index; Activity 7: Measuring and Comparing the Performance of the Algorithms; Summary; Supervised Learning: Key Steps; Introduction; Model Validation and Testing; Data Partition; Split Ratio; Exercise 10: Performing Data Partition over a Sample Dataset; Cross Validation; Exercise 11: Using Cross-Validation to Partition the Train Set into a Training and a Validation Set; Activity 8: Data Partition over a Handwritten Digit Dataset; Evaluation Metrics
Evaluation Metrics for Classification TasksExercise 12: Calculating Different Evaluation Metrics over a Classification Task; Choosing an Evaluation Metric; Evaluation Metrics for Regression Tasks; Exercise 13: Calculating Evaluation Metrics over a Regression Task; Activity 9: Evaluating the Performance of the Model Trained over a Handwritten Dataset; Error Analysis; Bias, Variance, and Data Mismatch; Exercise 14: Calculating the Error Rate over Different Sets of Data; Activity 10: Performing Error Analysis over a Model Trained to Recognize Handwritten Digits; Summary

~РУБ DDC 005.133

Рубрики: Python (Computer program language)

   Machine learning.


   Artificial intelligence.


   COMPUTERS / Programming Languages / Python.


Аннотация: As machine learning algorithms become popular, new tools that optimize these algorithms are also developed. Machine Learning Fundamentals explains the scikit-learn API, which is a package created to facilitate the process of building machine learning applications. By explaining the differences between supervised and unsupervised models and by ...

DDC 621.367
D 50

Dey, Sandipan,.
    Hands-on image processing with Python : : expert techniques for advanced image analysis and effective interpretation of image data / / Sandipan Dey. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/2FF76B16-D4FA-4529-AC43-E0EF2151446D. - ISBN 178934185X. - ISBN 9781789341850 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed February 1, 2019).
Параллельные издания: Print version: :

~РУБ DDC 621.367

Рубрики: Image processing.

   Python (Computer program language)


   Computer vision.


   Machine learning.


   Computer vision.


   Image processing.


   Machine learning.


   Python (Computer program language)


   TECHNOLOGY & ENGINEERING / Mechanical.


Dey, Sandipan,. Hands-on image processing with Python : [Электронный ресурс] : expert techniques for advanced image analysis and effective interpretation of image data / / Sandipan Dey., 2018. - 1 online resource (1 volume) : с.

10.

Dey, Sandipan,. Hands-on image processing with Python : [Электронный ресурс] : expert techniques for advanced image analysis and effective interpretation of image data / / Sandipan Dey., 2018. - 1 online resource (1 volume) : с.


DDC 621.367
D 50

Dey, Sandipan,.
    Hands-on image processing with Python : : expert techniques for advanced image analysis and effective interpretation of image data / / Sandipan Dey. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/2FF76B16-D4FA-4529-AC43-E0EF2151446D. - ISBN 178934185X. - ISBN 9781789341850 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed February 1, 2019).
Параллельные издания: Print version: :

~РУБ DDC 621.367

Рубрики: Image processing.

   Python (Computer program language)


   Computer vision.


   Machine learning.


   Computer vision.


   Image processing.


   Machine learning.


   Python (Computer program language)


   TECHNOLOGY & ENGINEERING / Mechanical.


Page 1, Results: 55

 

All acquisitions for 
Or select a month