Electronic catalog

el cat en


 

База данных: Electronic library

Page 1, Results: 13

Отмеченные записи: 0

DDC 182/.2
L 50

Lehman, Geoff, (1971-).
    The Parthenon and liberal education / / Geoff Lehman & Michael Weinman. - Albany, NY : : State University of New York Press,, [2018]. - 1 online resource (xxxiii, 234 pages). : il. - (SUNY Series in Ancient Greek Philosophy.). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/F0BB21C6-4C1B-443E-906A-E0AC9B6034F9. - ISBN 9781438468433 (electronic book). - ISBN 1438468431 (electronic book)
Description based on online resource; title from digital title page (viewed on February 15, 2019).
Параллельные издания: Print version: : Lehman, Geoff, 1971- Parthenon and liberal education. - Albany, NY : State University of New York, 2018. - ISBN 9781438468419
    Содержание:
Intro; Contents; List of Illustrations; Acknowledgements; Introduction: Thinking the Parthenon and Liberal Arts Education Together; 1. The Parthenon as an Institution of Liberal Arts Education; 2. The Parthenon and the Historiography of Greek Mathematics; Part I: Plato on Dialectic and the Problem-Based Study of Mathematics; Chapter 1: Dialectic and the Mathematical Arts in Republic (9.587bâ#x80;#x93;588a): Philolausâ#x80;#x99;s Scale and the Final Bout between the Just and Unjust Souls; 1. The Two Interpretive Principles We Bring to Platoâ#x80;#x99;s Dialogues; Leaving Things Out.
2. Why 729? The Positive Absence of Harmony in Resp. 9.587bâ#x80;#x93;588aFrom the Five Regimes to Philolausâ#x80;#x99;s Great Year; The Unspoken Resonance of 729 for Philolaus; Chapter 2: Dialectic and the Mathematical Arts in Timaeus (35bâ#x80;#x93;36c): Philolausâ#x80;#x99;s Scale in the Construction of the World-Soul; 1. Our Interpretive Principles as Applied to Timaeus; 2. Dialectic and the Debt to Philolaus; Chapter 3: Platonic Dialectic, Pythagorean Harmonics, and Liberal Arts Education; 1. Pythagorean Harmonics and Platoâ#x80;#x99;s Subordination of Mathematics to Dialectic in Resp. 7.
2. Plato and the Liberal Arts: Epistemic Closure in Mathematics and the Openness of DialecticPart II: Harmonia and Symmetria of the Parthenon; Chapter 4: The Parthenon and the Musical Scale; 1. Introduction: The Discovery of the Irrational; 2. Symmetria and the Doric Order; 3. Continuous Proportion as Construction; 4. On Beauty; or, Arithmetic and Geometry as Liberal Arts; Chapter 5: The Corner Problem; 1. Remainders and Adjustments; 2. The Kanon of Polykleitos; Chapter 6: Refinements and the Question of Dialectic; 1. The Refinements: Optical or Ontological?
2. Column Inclination: Harmonia over Symmetria3. Curvature: Toward Dialectic; Afterword; Appendix A: Pythagorean Musical Ratios; Appendix B: Principal Measurements of the Parthenon; Appendix C: Elements of the Doric Order; Appendix D: Ground Plan of the Parthenon; Appendix E: Glossary of Technical Terms; Notes; Works Cited; Index.

~РУБ DDC 182/.2

Рубрики: Mathematics--History.

   Philosophy, Ancient.


   PHILOSOPHY--History & Surveys--Ancient & Classical.


   Mathematics.


   Philosophy, Ancient.



Доп.точки доступа:
Weinman, Michael, \author.\
Philolaus,
Plato.

Lehman, Geoff,. The Parthenon and liberal education / [Электронный ресурс] / Geoff Lehman & Michael Weinman., [2018]. - 1 online resource (xxxiii, 234 pages). с. (Введено оглавление)

1.

Lehman, Geoff,. The Parthenon and liberal education / [Электронный ресурс] / Geoff Lehman & Michael Weinman., [2018]. - 1 online resource (xxxiii, 234 pages). с. (Введено оглавление)


DDC 182/.2
L 50

Lehman, Geoff, (1971-).
    The Parthenon and liberal education / / Geoff Lehman & Michael Weinman. - Albany, NY : : State University of New York Press,, [2018]. - 1 online resource (xxxiii, 234 pages). : il. - (SUNY Series in Ancient Greek Philosophy.). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/F0BB21C6-4C1B-443E-906A-E0AC9B6034F9. - ISBN 9781438468433 (electronic book). - ISBN 1438468431 (electronic book)
Description based on online resource; title from digital title page (viewed on February 15, 2019).
Параллельные издания: Print version: : Lehman, Geoff, 1971- Parthenon and liberal education. - Albany, NY : State University of New York, 2018. - ISBN 9781438468419
    Содержание:
Intro; Contents; List of Illustrations; Acknowledgements; Introduction: Thinking the Parthenon and Liberal Arts Education Together; 1. The Parthenon as an Institution of Liberal Arts Education; 2. The Parthenon and the Historiography of Greek Mathematics; Part I: Plato on Dialectic and the Problem-Based Study of Mathematics; Chapter 1: Dialectic and the Mathematical Arts in Republic (9.587bâ#x80;#x93;588a): Philolausâ#x80;#x99;s Scale and the Final Bout between the Just and Unjust Souls; 1. The Two Interpretive Principles We Bring to Platoâ#x80;#x99;s Dialogues; Leaving Things Out.
2. Why 729? The Positive Absence of Harmony in Resp. 9.587bâ#x80;#x93;588aFrom the Five Regimes to Philolausâ#x80;#x99;s Great Year; The Unspoken Resonance of 729 for Philolaus; Chapter 2: Dialectic and the Mathematical Arts in Timaeus (35bâ#x80;#x93;36c): Philolausâ#x80;#x99;s Scale in the Construction of the World-Soul; 1. Our Interpretive Principles as Applied to Timaeus; 2. Dialectic and the Debt to Philolaus; Chapter 3: Platonic Dialectic, Pythagorean Harmonics, and Liberal Arts Education; 1. Pythagorean Harmonics and Platoâ#x80;#x99;s Subordination of Mathematics to Dialectic in Resp. 7.
2. Plato and the Liberal Arts: Epistemic Closure in Mathematics and the Openness of DialecticPart II: Harmonia and Symmetria of the Parthenon; Chapter 4: The Parthenon and the Musical Scale; 1. Introduction: The Discovery of the Irrational; 2. Symmetria and the Doric Order; 3. Continuous Proportion as Construction; 4. On Beauty; or, Arithmetic and Geometry as Liberal Arts; Chapter 5: The Corner Problem; 1. Remainders and Adjustments; 2. The Kanon of Polykleitos; Chapter 6: Refinements and the Question of Dialectic; 1. The Refinements: Optical or Ontological?
2. Column Inclination: Harmonia over Symmetria3. Curvature: Toward Dialectic; Afterword; Appendix A: Pythagorean Musical Ratios; Appendix B: Principal Measurements of the Parthenon; Appendix C: Elements of the Doric Order; Appendix D: Ground Plan of the Parthenon; Appendix E: Glossary of Technical Terms; Notes; Works Cited; Index.

~РУБ DDC 182/.2

Рубрики: Mathematics--History.

   Philosophy, Ancient.


   PHILOSOPHY--History & Surveys--Ancient & Classical.


   Mathematics.


   Philosophy, Ancient.



Доп.точки доступа:
Weinman, Michael, \author.\
Philolaus,
Plato.

DDC 192
P 57


    Philosophy of Logic and Mathematics : : Proceedings of the 41st International Ludwig Wittgenstein Symposium / / Gabriele M. Mras, Bernhard Ritter, Paul Weingartner. - 1515/9783110657883. - Berlin ; ; Boston : : De Gruyter,, ©2019. - 1 online resource (XII, 547 pages) : : illustrations ( час. мин.), 1515/9783110657883. - (Publications of the Austrian Ludwig Wittgenstein Society - New Series ; ; 27). - In English. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/0913B97A-8380-45D1-864C-57EE450FF079. - ISBN 9783110657883 (electronic bk.). - ISBN 3110657880 (electronic bk.). - ISBN 9783110654301 (hardbound). - ISBN 311065430X (hardbound). - ISBN 9783110654547 (electronic bk.). - ISBN 3110654547 (electronic bk.)
Description based on print version record
Параллельные издания: Print version: : Philosophy of logic and mathematics. - Berlin : De Gruyter, [2019]. - ISBN 9783110654301

~РУБ DDC 192

Рубрики: Knowledge, Theory of

   Logic


   Mathematics


   PHILOSOPHY--History & Surveys--Modern.


   Knowledge, Theory of.


   Logic.


   Mathematics.


Аннотация: This volume presents different conceptions of logic and mathematics and discuss their philosophical foundations and consequences. This concerns first of all topics of Wittgenstein's ideas on logic and mathematics; questions about the structural complexity of propositions; the more recent debate about Neo-Logicism and Neo-Fregeanism; the comparison and translatability of different logics; the foundations of mathematics: intuitionism, mathematical realism, and formalism

Доп.точки доступа:
Mras, Gabriele M., \ed.\
Weingartner, Paul, \ed.\
Ritter, Bernhard, \ed.\

Philosophy of Logic and Mathematics : [Электронный ресурс] : Proceedings of the 41st International Ludwig Wittgenstein Symposium / / Gabriele M. Mras, Bernhard Ritter, Paul Weingartner., ©2019. - 1 online resource (XII, 547 pages) : с.

2.

Philosophy of Logic and Mathematics : [Электронный ресурс] : Proceedings of the 41st International Ludwig Wittgenstein Symposium / / Gabriele M. Mras, Bernhard Ritter, Paul Weingartner., ©2019. - 1 online resource (XII, 547 pages) : с.


DDC 192
P 57


    Philosophy of Logic and Mathematics : : Proceedings of the 41st International Ludwig Wittgenstein Symposium / / Gabriele M. Mras, Bernhard Ritter, Paul Weingartner. - 1515/9783110657883. - Berlin ; ; Boston : : De Gruyter,, ©2019. - 1 online resource (XII, 547 pages) : : illustrations ( час. мин.), 1515/9783110657883. - (Publications of the Austrian Ludwig Wittgenstein Society - New Series ; ; 27). - In English. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/0913B97A-8380-45D1-864C-57EE450FF079. - ISBN 9783110657883 (electronic bk.). - ISBN 3110657880 (electronic bk.). - ISBN 9783110654301 (hardbound). - ISBN 311065430X (hardbound). - ISBN 9783110654547 (electronic bk.). - ISBN 3110654547 (electronic bk.)
Description based on print version record
Параллельные издания: Print version: : Philosophy of logic and mathematics. - Berlin : De Gruyter, [2019]. - ISBN 9783110654301

~РУБ DDC 192

Рубрики: Knowledge, Theory of

   Logic


   Mathematics


   PHILOSOPHY--History & Surveys--Modern.


   Knowledge, Theory of.


   Logic.


   Mathematics.


Аннотация: This volume presents different conceptions of logic and mathematics and discuss their philosophical foundations and consequences. This concerns first of all topics of Wittgenstein's ideas on logic and mathematics; questions about the structural complexity of propositions; the more recent debate about Neo-Logicism and Neo-Fregeanism; the comparison and translatability of different logics; the foundations of mathematics: intuitionism, mathematical realism, and formalism

Доп.точки доступа:
Mras, Gabriele M., \ed.\
Weingartner, Paul, \ed.\
Ritter, Bernhard, \ed.\

DDC 510.92/2
P 86

Posamentier, Alfred S. ,
    Math makers : : the lives and works of 50 famous mathematicians / / Alfred S. Posamentier and Christian Spreitzer. - Guilford, Connecticut : : Prometheus Books,, [2020]. - 1 online resource (xiv, 420 pages) : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/45FB4A43-2F17-4E48-9690-EC8B03688191. - ISBN 9781633885219 (electronic book). - ISBN 1633885216 (electronic book)
Description based on online resource; title from digital title page (viewed on February 25, 2020).
Параллельные издания: Print version: : Posamentier, Alfred S., author. Math makers. - Amherst, New York : Prometheus Books, 2019. - ISBN 9781633885202
    Содержание:
Introduction -- Thales of Miletus : Greek (c.624-546 BCE) -- Pythagoras : Greek (575-500 BCE) -- Eudoxus : Greek (408-355 BCE) -- Euclid : Greek (c.300 BCE) -- Archimedes : Greek(c.287-c.212 BCE) -- Eratosthenes : Greek (276-194 BCE) -- Claudius Ptolemy : Greco-Roman (100-170) -- Diophantus of Alexandria : Hellenistic Greek (c.201-285) -- Brahmagupta : India (598-670) -- Leonardo Pisano Bigollo, "Fibonacci" : Italian (1170-1250) -- Gerolamo Cardano : Italian (1501-1576) -- John Napier : Scottish (1550-1617) -- Johannes Kepler : German (1571- 1630) -- Rene Descartes : French (1596-1650) -- Pierre de Fermat : French (1607-1665) -- Blaise Pascal : French (1623-1662) -- Isaac Newton : English (1642-1727) -- Gottfried Wilhelm (von) Leibniz : German (1646-1716) -- Giovanni Ceva : Italian (1647-1734) -- Robert Simson : Scottish (1687-1768) -- Christian Goldbach : German (1690-1764) -- The Bernoullis, Daniel Bernoulli : Swiss (1700-1782) -- Leonhard Euler : Swiss (1707-1783) -- Maria Agnesi : Italian (1718-1799).
Pierre-Simon de Laplace : French (1749-1827) -- Lorenzo Mascheroni : Italian (1750-1800) -- Nathaniel Bowditch : American (1773 -- 1838) -- Sophie Germain : French (1776-1831) -- Carl Friedrich Gauss : German (1777-1855) -- Charles Babbage : English (1791-1871) -- Niels Henrik Abel : Norwegian (1802-1829) -- Evariste Galois : French (1811-1832) -- James Joseph Sylvester : English (1814-1897) -- Ada Lovelace : English (1815-1852) -- George Boole : English (1815-1864) -- Bernhard Riemann : German (1826-1866) -- Georg Cantor : German (1845-1918) -- Sofia Kovalevskaya : Russian (1850-1891) -- Giuseppe Peano : Italian (1858-1932) -- David Hilbert : German (1862-1943) -- G.H. Hardy : English (1877-1947) -- Emmy Noether : German (1882-1935) -- Srinivasa Ramanujan : India (1887-1920) -- John von Neumann : Hungarian-American (1903-1957) -- Kurt Godel : Austrian-American (1906-1978) -- Alan Turing : English (1912-1954) -- Paul Erdos : Hungarian (1913-1996) -- Herbert A. Hauptman : American (1917-2011) -- Benoit Mandelbrot : Polish-American (1924-2010) -- Maryam Mirzakhani : Iranian (1977-2017).

~РУБ DDC 510.92/2

Рубрики: Mathematicians

   Mathematics--History.


   Mathematicians.


   Mathematics.


Аннотация: "Two veteran math educators concisely profile leading mathematicians throughout history highlighting their often unusual personalities and lives while giving average readers insights into the importance of their mathematical discoveries."--

Доп.точки доступа:
Spreitzer, Christian, (1979-) \author.\

Posamentier, Alfred S., Math makers : [Электронный ресурс] : the lives and works of 50 famous mathematicians / / Alfred S. Posamentier and Christian Spreitzer., [2020]. - 1 online resource (xiv, 420 pages) с. (Введено оглавление)

3.

Posamentier, Alfred S., Math makers : [Электронный ресурс] : the lives and works of 50 famous mathematicians / / Alfred S. Posamentier and Christian Spreitzer., [2020]. - 1 online resource (xiv, 420 pages) с. (Введено оглавление)


DDC 510.92/2
P 86

Posamentier, Alfred S. ,
    Math makers : : the lives and works of 50 famous mathematicians / / Alfred S. Posamentier and Christian Spreitzer. - Guilford, Connecticut : : Prometheus Books,, [2020]. - 1 online resource (xiv, 420 pages) : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/45FB4A43-2F17-4E48-9690-EC8B03688191. - ISBN 9781633885219 (electronic book). - ISBN 1633885216 (electronic book)
Description based on online resource; title from digital title page (viewed on February 25, 2020).
Параллельные издания: Print version: : Posamentier, Alfred S., author. Math makers. - Amherst, New York : Prometheus Books, 2019. - ISBN 9781633885202
    Содержание:
Introduction -- Thales of Miletus : Greek (c.624-546 BCE) -- Pythagoras : Greek (575-500 BCE) -- Eudoxus : Greek (408-355 BCE) -- Euclid : Greek (c.300 BCE) -- Archimedes : Greek(c.287-c.212 BCE) -- Eratosthenes : Greek (276-194 BCE) -- Claudius Ptolemy : Greco-Roman (100-170) -- Diophantus of Alexandria : Hellenistic Greek (c.201-285) -- Brahmagupta : India (598-670) -- Leonardo Pisano Bigollo, "Fibonacci" : Italian (1170-1250) -- Gerolamo Cardano : Italian (1501-1576) -- John Napier : Scottish (1550-1617) -- Johannes Kepler : German (1571- 1630) -- Rene Descartes : French (1596-1650) -- Pierre de Fermat : French (1607-1665) -- Blaise Pascal : French (1623-1662) -- Isaac Newton : English (1642-1727) -- Gottfried Wilhelm (von) Leibniz : German (1646-1716) -- Giovanni Ceva : Italian (1647-1734) -- Robert Simson : Scottish (1687-1768) -- Christian Goldbach : German (1690-1764) -- The Bernoullis, Daniel Bernoulli : Swiss (1700-1782) -- Leonhard Euler : Swiss (1707-1783) -- Maria Agnesi : Italian (1718-1799).
Pierre-Simon de Laplace : French (1749-1827) -- Lorenzo Mascheroni : Italian (1750-1800) -- Nathaniel Bowditch : American (1773 -- 1838) -- Sophie Germain : French (1776-1831) -- Carl Friedrich Gauss : German (1777-1855) -- Charles Babbage : English (1791-1871) -- Niels Henrik Abel : Norwegian (1802-1829) -- Evariste Galois : French (1811-1832) -- James Joseph Sylvester : English (1814-1897) -- Ada Lovelace : English (1815-1852) -- George Boole : English (1815-1864) -- Bernhard Riemann : German (1826-1866) -- Georg Cantor : German (1845-1918) -- Sofia Kovalevskaya : Russian (1850-1891) -- Giuseppe Peano : Italian (1858-1932) -- David Hilbert : German (1862-1943) -- G.H. Hardy : English (1877-1947) -- Emmy Noether : German (1882-1935) -- Srinivasa Ramanujan : India (1887-1920) -- John von Neumann : Hungarian-American (1903-1957) -- Kurt Godel : Austrian-American (1906-1978) -- Alan Turing : English (1912-1954) -- Paul Erdos : Hungarian (1913-1996) -- Herbert A. Hauptman : American (1917-2011) -- Benoit Mandelbrot : Polish-American (1924-2010) -- Maryam Mirzakhani : Iranian (1977-2017).

~РУБ DDC 510.92/2

Рубрики: Mathematicians

   Mathematics--History.


   Mathematicians.


   Mathematics.


Аннотация: "Two veteran math educators concisely profile leading mathematicians throughout history highlighting their often unusual personalities and lives while giving average readers insights into the importance of their mathematical discoveries."--

Доп.точки доступа:
Spreitzer, Christian, (1979-) \author.\

DDC 510.92/273
R 66

Roberts, David Lindsay,.
    The republic of numbers : : unexpected stories of mathematical Americans / / David Lindsay Roberts. - Baltimore : : Johns Hopkins University Press,, ©2019. - 1 online resource. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/9788B8A9-F68A-4A75-939B-ACC492CD4729. - ISBN 9781421433097 (electronic book). - ISBN 1421433095 (electronic book)
Description based on online resource; title from digital title page (viewed on October 09, 2019).
Параллельные издания: Print version: : Roberts, David Lindsay. Republic of numbers. - Baltimore : Johns Hopkins University Press, 2019. - ISBN 9781421433080
    Содержание:
Introduction -- Practical navigator : Nathaniel Bowditch, 1806 -- Hudson River School : Sylvanus Thayer, 1815 -- Political arithmetic : Abraham Lincoln, 1826 -- Textbook messages : Catherine Beecher and Joseph Ray, 1832 -- Learning to count : J. Willard Gibbs, 1841 -- Naval reserve : Charles H. Davis, 1857 -- General principles : Daniel Harvey Hill, 1862 -- Fellow worker : Christine Ladd-Franklin, 1878 -- Straddler : Kelly Miller, 1887 -- Frontiersmen : Herman Hollerith and E.H. Moore, 1893.
Poetic historian : E.T. Bell, 1906 -- Man of school mathematics : Charles M. Austin, 1914 -- Organization man : E.B. Wilson, 1922 -- Versed in math : Lillian R. Lieber and Hugh G. Lieber, 1931 -- Machine whisperer : Grace Hopper, 1941 -- Survivor : Izaak Wirszup, 1956 -- Carrying Old Virginny forward : Edgar L. Edwards, Jr., 1960 -- Americano : Joaquin Basilio Diaz, 1974 -- Math warrior : Frank B. Allen, 1984 -- Suspicious minds : John F. Nash, Fr., 1994 -- Conclusion.

~РУБ DDC 510.92/273

Рубрики: Mathematicians--United States

   Mathematics--History.--United States


   Mathematicians.


   Mathematics.


   United States.
Аннотация: "This book tells the story of how America changed from a nation devoid of mathematical interest and expertise into a powerhouse of thinkers. The story is told chronologically, with one example pulled from each decade; these chapters reveal pivotal moments in America's mathematical maturation and feature a diverse cast of historical figures"--

Roberts, David Lindsay,. The republic of numbers : [Электронный ресурс] : unexpected stories of mathematical Americans / / David Lindsay Roberts., ©2019. - 1 online resource. с. (Введено оглавление)

4.

Roberts, David Lindsay,. The republic of numbers : [Электронный ресурс] : unexpected stories of mathematical Americans / / David Lindsay Roberts., ©2019. - 1 online resource. с. (Введено оглавление)


DDC 510.92/273
R 66

Roberts, David Lindsay,.
    The republic of numbers : : unexpected stories of mathematical Americans / / David Lindsay Roberts. - Baltimore : : Johns Hopkins University Press,, ©2019. - 1 online resource. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/9788B8A9-F68A-4A75-939B-ACC492CD4729. - ISBN 9781421433097 (electronic book). - ISBN 1421433095 (electronic book)
Description based on online resource; title from digital title page (viewed on October 09, 2019).
Параллельные издания: Print version: : Roberts, David Lindsay. Republic of numbers. - Baltimore : Johns Hopkins University Press, 2019. - ISBN 9781421433080
    Содержание:
Introduction -- Practical navigator : Nathaniel Bowditch, 1806 -- Hudson River School : Sylvanus Thayer, 1815 -- Political arithmetic : Abraham Lincoln, 1826 -- Textbook messages : Catherine Beecher and Joseph Ray, 1832 -- Learning to count : J. Willard Gibbs, 1841 -- Naval reserve : Charles H. Davis, 1857 -- General principles : Daniel Harvey Hill, 1862 -- Fellow worker : Christine Ladd-Franklin, 1878 -- Straddler : Kelly Miller, 1887 -- Frontiersmen : Herman Hollerith and E.H. Moore, 1893.
Poetic historian : E.T. Bell, 1906 -- Man of school mathematics : Charles M. Austin, 1914 -- Organization man : E.B. Wilson, 1922 -- Versed in math : Lillian R. Lieber and Hugh G. Lieber, 1931 -- Machine whisperer : Grace Hopper, 1941 -- Survivor : Izaak Wirszup, 1956 -- Carrying Old Virginny forward : Edgar L. Edwards, Jr., 1960 -- Americano : Joaquin Basilio Diaz, 1974 -- Math warrior : Frank B. Allen, 1984 -- Suspicious minds : John F. Nash, Fr., 1994 -- Conclusion.

~РУБ DDC 510.92/273

Рубрики: Mathematicians--United States

   Mathematics--History.--United States


   Mathematicians.


   Mathematics.


   United States.
Аннотация: "This book tells the story of how America changed from a nation devoid of mathematical interest and expertise into a powerhouse of thinkers. The story is told chronologically, with one example pulled from each decade; these chapters reveal pivotal moments in America's mathematical maturation and feature a diverse cast of historical figures"--

DDC 510
T 44


    The best writing on mathematics. / editor. Pitici, Mircea,.
   2019 /. - Princeton, New Jersey : : Princeton University Press,, [2019]. - 1 online resource. - (The best writing on mathematics ; ; tenth). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/923CF352-1AEF-493B-94CE-90DB781C9777. - ISBN 9780691197944 (electronic book). - ISBN 0691197946 (electronic book)
Description based on online resource; title from digital title page (viewed on November 21, 2019).
Параллельные издания: Print version: : Pitici, Mircea. Best Writing on Mathematics 2019. - Princeton : Princeton University Press, ©2019. - ISBN 9780691198675
    Содержание:
Cover; Title; Copyright; Dedication; Contents; Illustrations; Introduction; Geometry v. Gerrymandering; Slicing Sandwiches, States, and Solar Systems: Can Mathematical Tools Help Determine What Divisions Are Provably Fair?; Does Mathematics Teach How to Think?; Abstracting the Rubik's Cube; Topology-Disturbing Objects: A New Class of 3D Optical Illusion; Mathematicians Explore Mirror Link between Two Geometric Worlds; Professor Engel's Marvelously Improbable Machines; The On-Line Encyclopedia of Integer Sequences; Mathematics for Big Data; The Un(solv)able Problem
The Mechanization of MathematicsMathematics as an Empirical Phenomenon, Subject to Modeling; Does 2 + 3 = 5? In Defense of a Near Absurdity; Gregory's Sixth Operation; Kolmogorov Complexity and Our Search for Meaning: What Math Can Teach Us about Finding Order in our Chaotic Lives; Ethics in Statistical Practice and Communication: Five Recommendations; The Fields Medal Should Return to Its Roots; The Erdős Paradox; Contributors; Notable Writings; Acknowledgments; Credits

~РУБ DDC 510

Рубрики: Mathematics.


Доп.точки доступа:
Pitici, Mircea, \editor.\
Pitici, Mircea, (1965-) \editor.\

The best writing on mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2019 /, [2019]. - 1 online resource с. (Введено оглавление)

5.

The best writing on mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2019 /, [2019]. - 1 online resource с. (Введено оглавление)


DDC 510
T 44


    The best writing on mathematics. / editor. Pitici, Mircea,.
   2019 /. - Princeton, New Jersey : : Princeton University Press,, [2019]. - 1 online resource. - (The best writing on mathematics ; ; tenth). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/923CF352-1AEF-493B-94CE-90DB781C9777. - ISBN 9780691197944 (electronic book). - ISBN 0691197946 (electronic book)
Description based on online resource; title from digital title page (viewed on November 21, 2019).
Параллельные издания: Print version: : Pitici, Mircea. Best Writing on Mathematics 2019. - Princeton : Princeton University Press, ©2019. - ISBN 9780691198675
    Содержание:
Cover; Title; Copyright; Dedication; Contents; Illustrations; Introduction; Geometry v. Gerrymandering; Slicing Sandwiches, States, and Solar Systems: Can Mathematical Tools Help Determine What Divisions Are Provably Fair?; Does Mathematics Teach How to Think?; Abstracting the Rubik's Cube; Topology-Disturbing Objects: A New Class of 3D Optical Illusion; Mathematicians Explore Mirror Link between Two Geometric Worlds; Professor Engel's Marvelously Improbable Machines; The On-Line Encyclopedia of Integer Sequences; Mathematics for Big Data; The Un(solv)able Problem
The Mechanization of MathematicsMathematics as an Empirical Phenomenon, Subject to Modeling; Does 2 + 3 = 5? In Defense of a Near Absurdity; Gregory's Sixth Operation; Kolmogorov Complexity and Our Search for Meaning: What Math Can Teach Us about Finding Order in our Chaotic Lives; Ethics in Statistical Practice and Communication: Five Recommendations; The Fields Medal Should Return to Its Roots; The Erdős Paradox; Contributors; Notable Writings; Acknowledgments; Credits

~РУБ DDC 510

Рубрики: Mathematics.


Доп.точки доступа:
Pitici, Mircea, \editor.\
Pitici, Mircea, (1965-) \editor.\

DDC 510
T 44


    The best writing on mathematics. / editor. Pitici, Mircea,.
   2020 /. - Princeton, New Jersey : : Princeton University Press,, [2020]. - 1 online resource. - (The best writing in mathematics ; ; 11). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/9A260823-CF7C-425C-8A98-3E75AA97A0AD. - ISBN 0691213658 (electronic book). - ISBN 9780691213651 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 24, 2020).
Параллельные издания: Print version: : Pitici, Mircea The Best Writing on Mathematics 2020. - Princeton : Princeton University Press,c2020. - ISBN 9780691207575

~РУБ DDC 510

Рубрики: Mathematics.

   MATHEMATICS / Essays.


Аннотация: The year's finest mathematical writing from around the worldThis annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2020 makes available to a wide audience many articles not easily found anywhere else--and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday aspects of math, and take readers behind the scenes of today's hottest mathematical debates.Here, Steven Strogatz reveals how calculus drives advances in virology, Paul Thagard argues that the power of mathematics stems from its combination of realistic and fictional qualities, and Erica Klarreich describes how Hao Huang used the combinatorics of cube nodes to solve a longstanding problem in computer science. In other essays, John Baez tells how he discovered the irresistible attractions of algebraic geometry, Mark Colyvan compares the radically different explanatory practices of mathematics and science, and Boris Odehnal reviews some surprising properties of multidimensional geometries. And there's much, much more.In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor.This book belongs on the shelf of anyone interested in where math has taken us--and where it is headed.

Доп.точки доступа:
Pitici, Mircea, \editor.\
Pitici, Mircea, (1965-) \editor.\

The best writing on mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2020 /, [2020]. - 1 online resource. с.

6.

The best writing on mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2020 /, [2020]. - 1 online resource. с.


DDC 510
T 44


    The best writing on mathematics. / editor. Pitici, Mircea,.
   2020 /. - Princeton, New Jersey : : Princeton University Press,, [2020]. - 1 online resource. - (The best writing in mathematics ; ; 11). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/9A260823-CF7C-425C-8A98-3E75AA97A0AD. - ISBN 0691213658 (electronic book). - ISBN 9780691213651 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 24, 2020).
Параллельные издания: Print version: : Pitici, Mircea The Best Writing on Mathematics 2020. - Princeton : Princeton University Press,c2020. - ISBN 9780691207575

~РУБ DDC 510

Рубрики: Mathematics.

   MATHEMATICS / Essays.


Аннотация: The year's finest mathematical writing from around the worldThis annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2020 makes available to a wide audience many articles not easily found anywhere else--and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday aspects of math, and take readers behind the scenes of today's hottest mathematical debates.Here, Steven Strogatz reveals how calculus drives advances in virology, Paul Thagard argues that the power of mathematics stems from its combination of realistic and fictional qualities, and Erica Klarreich describes how Hao Huang used the combinatorics of cube nodes to solve a longstanding problem in computer science. In other essays, John Baez tells how he discovered the irresistible attractions of algebraic geometry, Mark Colyvan compares the radically different explanatory practices of mathematics and science, and Boris Odehnal reviews some surprising properties of multidimensional geometries. And there's much, much more.In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor.This book belongs on the shelf of anyone interested in where math has taken us--and where it is headed.

Доп.точки доступа:
Pitici, Mircea, \editor.\
Pitici, Mircea, (1965-) \editor.\

DDC 510.5
T 44


    The Best Writing on Mathematics. / editor. Pitici, Mircea,.
   2021 /. - Princeton : : Princeton University Press,, [2022]. - 1 online resource (320 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/330C9E1C-C807-4902-B5FE-79396A192587. - ISBN 0691225729 (electronic book). - ISBN 9780691225722 (electronic bk.)
Online resource; title from digital title page (viewed on August 05, 2022).
Параллельные издания: Print version: : Pitici, Mircea. Best Writing on Mathematics 2021. - Princeton : Princeton University Press, ©2022. - ISBN 9780691225715

~РУБ DDC 510.5

Рубрики: Mathematics.

   MATHEMATICS--General.


   Mathematics.


Аннотация: The year's finest mathematical writing from around the worldThis annual anthology brings together the year's finest mathematics writing from around the world--and you don't need to be a mathematician to enjoy the pieces collected here. These essays--from leading names and fresh new voices--delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice, and taking readers behind the scenes of today's hottest mathematical debates.Here, Viktor Blåsjö gives a brief history of "lockdown mathematics"; Yelda Nasifoglu decodes the politics of a seventeenth-century play in which the characters are geometric shapes; and Andrew Lewis-Pye explains the basic algorithmic rules and computational procedures behind cryptocurrencies. In other essays, Terence Tao candidly recalls the adventures and misadventures of growing up to become a leading mathematician; Natalie Wolchover shows how old math gives new clues about whether time really flows; and David Hand discusses the problem of "dark data"--information that is missing or ignored. And there is much, much more.

Доп.точки доступа:
Pitici, Mircea, \editor.\

The Best Writing on Mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2021 /, [2022]. - 1 online resource (320 pages) с.

7.

The Best Writing on Mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2021 /, [2022]. - 1 online resource (320 pages) с.


DDC 510.5
T 44


    The Best Writing on Mathematics. / editor. Pitici, Mircea,.
   2021 /. - Princeton : : Princeton University Press,, [2022]. - 1 online resource (320 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/330C9E1C-C807-4902-B5FE-79396A192587. - ISBN 0691225729 (electronic book). - ISBN 9780691225722 (electronic bk.)
Online resource; title from digital title page (viewed on August 05, 2022).
Параллельные издания: Print version: : Pitici, Mircea. Best Writing on Mathematics 2021. - Princeton : Princeton University Press, ©2022. - ISBN 9780691225715

~РУБ DDC 510.5

Рубрики: Mathematics.

   MATHEMATICS--General.


   Mathematics.


Аннотация: The year's finest mathematical writing from around the worldThis annual anthology brings together the year's finest mathematics writing from around the world--and you don't need to be a mathematician to enjoy the pieces collected here. These essays--from leading names and fresh new voices--delve into the history, philosophy, teaching, and everyday aspects of math, offering surprising insights into its nature, meaning, and practice, and taking readers behind the scenes of today's hottest mathematical debates.Here, Viktor Blåsjö gives a brief history of "lockdown mathematics"; Yelda Nasifoglu decodes the politics of a seventeenth-century play in which the characters are geometric shapes; and Andrew Lewis-Pye explains the basic algorithmic rules and computational procedures behind cryptocurrencies. In other essays, Terence Tao candidly recalls the adventures and misadventures of growing up to become a leading mathematician; Natalie Wolchover shows how old math gives new clues about whether time really flows; and David Hand discusses the problem of "dark data"--information that is missing or ignored. And there is much, much more.

Доп.точки доступа:
Pitici, Mircea, \editor.\

DDC 514.34
S 26

Saveliev, Nikolai.
    Lectures on the Topology of 3-Manifolds [[electronic resource] :] : an Introduction to the Casson Invariant. / Nikolai. Saveliev. - 2nd ed. - Berlin : : De Gruyter,, 2011. - 1 online resource (219 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/AD425ADF-8232-4F7D-903F-E27343AD6B01. - ISBN 9783110250367 (electronic bk.). - ISBN 3110250365 (e lectronic bk.)
Description based on print version record.
Параллельные издания: Print version: : Saveliev, Nikolai Lectures on the Topology of 3-Manifolds : An Introduction to the Casson Invariant. - Berlin : De Gruyter, c2011. - ISBN 9783110250350
    Содержание:
Preface; Introduction; Glossary; 1 Heegaard splittings; 1.1 Introduction; 1.2 Existence of Heegaard splittings; 1.3 Stable equivalence of Heegaard splittings; 1.4 The mapping class group; 1.5 Manifolds of Heegaard genus <_ 1; 1.6 Seifert manifolds; 1.7 Heegaard diagrams; 1.8 Exercises; 2 Dehn surgery; 2.1 Knots and links in 3-manifolds; 2.2 Surgery on links in S3; 2.3 Surgery description of lens spaces and Seifert manifolds; 2.4 Surgery and 4-manifolds; 2.5 Exercises; 3 Kirby calculus; 3.1 The linking number; 3.2 Kirby moves; 3.3 The linking matrix; 3.4 Reversing orientation; 3.5 Exercises.
4 Even surgeries4.1 Exercises; 5 Review of 4-manifolds; 5.1 Definition of the intersection form; 5.2 The unimodular integral forms; 5.3 Four-manifolds and intersection forms; 5.4 Exercises; 6 Four-manifolds with boundary; 6.1 The intersection form; 6.2 Homology spheres via surgery on knots; 6.3 Seifert homology spheres; 6.4 The Rohlin invariant; 6.5 Exercises; 7 Invariants of knots and links; 7.1 Seifert surfaces; 7.2 Seifert matrices; 7.3 The Alexander polynomial; 7.4 Other invariants from Seifert surfaces; 7.5 Knots in homology spheres; 7.6 Boundary links and the Alexander polynomial.
7.7 Exercises8 Fibered knots; 8.1 The definition of a fibered knot; 8.2 The monodromy; 8.3 More about torus knots; 8.4 Joins; 8.5 The monodromy of torus knots; 8.6 Open book decompositions; 8.7 Exercises; 9 The Arf-invariant; 9.1 The Arf-invariant of a quadratic form; 9.2 The Arf-invariant of a knot; 9.3 Exercises; 10 Rohlin's theorem; 10.1 Characteristic surfaces; 10.2 The definition of q~; 10.3 Representing homology classes by surfaces; 11 The Rohlin invariant; 11.1 Definition of the Rohlin invariant; 11.2 The Rohlin invariant of Seifert spheres.
11.3 A surgery formula for the Rohlin invariant11.4 The homology cobordism group; 11.5 Exercises; 12 The Casson invariant; 12.1 Exercises; 13 The group SU (2); 13.1 Exercises; 14 Representation spaces; 14.1 The topology of representation spaces; 14.2 Irreducible representations; 14.3 Representations of free groups; 14.4 Representations of surface groups; 14.5 Representations for Seifert homology spheres; 14.6 Exercises; 15 The local properties of representation spaces; 15.1 Exercises; 16 Casson's invariant for Heegaard splittings; 16.1 The intersection product; 16.2 The orientations.
16.3 Independence of Heegaard splitting16.4 Exercises; 17 Casson's invariant for knots; 17.1 Preferred Heegaard splittings; 17.2 The Casson invariant for knots; 17.3 The difference cycle; 17.4 The Casson invariant for boundary links; 17.5 The Casson invariant of a trefoil; 18 An application of the Casson invariant; 18.1 Triangulating 4-manifolds; 18.2 Higher-dimensional manifolds; 18.3 Exercises; 19 The Casson invariant of Seifert manifolds; 19.1 The space R(S (p, q, r)); 19.2 Calculation of the Casson invariant; 19.3 Exercises; Conclusion; Bibliography; Index.

~РУБ DDC 514.34

Рубрики: Homology.

   Physics.


   Three-manifolds (Topology)


   Mathematics.


   Three-manifolds (Topology)


   MATHEMATICS / Topology


Аннотация: This textbook, now in its second revised and extended edition, introduces the topology of 3- and 4-dimensional manifolds. It also considers new developments especially related to the Heegaard Floer and contact homology. The book is accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic topology, including the fundamental group, basic homology theory, and Poincaré duality on manifolds.

Saveliev, Nikolai. Lectures on the Topology of 3-Manifolds [[electronic resource] :] : an Introduction to the Casson Invariant. / Nikolai. Saveliev, 2011. - 1 online resource (219 p.) с. (Введено оглавление)

8.

Saveliev, Nikolai. Lectures on the Topology of 3-Manifolds [[electronic resource] :] : an Introduction to the Casson Invariant. / Nikolai. Saveliev, 2011. - 1 online resource (219 p.) с. (Введено оглавление)


DDC 514.34
S 26

Saveliev, Nikolai.
    Lectures on the Topology of 3-Manifolds [[electronic resource] :] : an Introduction to the Casson Invariant. / Nikolai. Saveliev. - 2nd ed. - Berlin : : De Gruyter,, 2011. - 1 online resource (219 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/AD425ADF-8232-4F7D-903F-E27343AD6B01. - ISBN 9783110250367 (electronic bk.). - ISBN 3110250365 (e lectronic bk.)
Description based on print version record.
Параллельные издания: Print version: : Saveliev, Nikolai Lectures on the Topology of 3-Manifolds : An Introduction to the Casson Invariant. - Berlin : De Gruyter, c2011. - ISBN 9783110250350
    Содержание:
Preface; Introduction; Glossary; 1 Heegaard splittings; 1.1 Introduction; 1.2 Existence of Heegaard splittings; 1.3 Stable equivalence of Heegaard splittings; 1.4 The mapping class group; 1.5 Manifolds of Heegaard genus <_ 1; 1.6 Seifert manifolds; 1.7 Heegaard diagrams; 1.8 Exercises; 2 Dehn surgery; 2.1 Knots and links in 3-manifolds; 2.2 Surgery on links in S3; 2.3 Surgery description of lens spaces and Seifert manifolds; 2.4 Surgery and 4-manifolds; 2.5 Exercises; 3 Kirby calculus; 3.1 The linking number; 3.2 Kirby moves; 3.3 The linking matrix; 3.4 Reversing orientation; 3.5 Exercises.
4 Even surgeries4.1 Exercises; 5 Review of 4-manifolds; 5.1 Definition of the intersection form; 5.2 The unimodular integral forms; 5.3 Four-manifolds and intersection forms; 5.4 Exercises; 6 Four-manifolds with boundary; 6.1 The intersection form; 6.2 Homology spheres via surgery on knots; 6.3 Seifert homology spheres; 6.4 The Rohlin invariant; 6.5 Exercises; 7 Invariants of knots and links; 7.1 Seifert surfaces; 7.2 Seifert matrices; 7.3 The Alexander polynomial; 7.4 Other invariants from Seifert surfaces; 7.5 Knots in homology spheres; 7.6 Boundary links and the Alexander polynomial.
7.7 Exercises8 Fibered knots; 8.1 The definition of a fibered knot; 8.2 The monodromy; 8.3 More about torus knots; 8.4 Joins; 8.5 The monodromy of torus knots; 8.6 Open book decompositions; 8.7 Exercises; 9 The Arf-invariant; 9.1 The Arf-invariant of a quadratic form; 9.2 The Arf-invariant of a knot; 9.3 Exercises; 10 Rohlin's theorem; 10.1 Characteristic surfaces; 10.2 The definition of q~; 10.3 Representing homology classes by surfaces; 11 The Rohlin invariant; 11.1 Definition of the Rohlin invariant; 11.2 The Rohlin invariant of Seifert spheres.
11.3 A surgery formula for the Rohlin invariant11.4 The homology cobordism group; 11.5 Exercises; 12 The Casson invariant; 12.1 Exercises; 13 The group SU (2); 13.1 Exercises; 14 Representation spaces; 14.1 The topology of representation spaces; 14.2 Irreducible representations; 14.3 Representations of free groups; 14.4 Representations of surface groups; 14.5 Representations for Seifert homology spheres; 14.6 Exercises; 15 The local properties of representation spaces; 15.1 Exercises; 16 Casson's invariant for Heegaard splittings; 16.1 The intersection product; 16.2 The orientations.
16.3 Independence of Heegaard splitting16.4 Exercises; 17 Casson's invariant for knots; 17.1 Preferred Heegaard splittings; 17.2 The Casson invariant for knots; 17.3 The difference cycle; 17.4 The Casson invariant for boundary links; 17.5 The Casson invariant of a trefoil; 18 An application of the Casson invariant; 18.1 Triangulating 4-manifolds; 18.2 Higher-dimensional manifolds; 18.3 Exercises; 19 The Casson invariant of Seifert manifolds; 19.1 The space R(S (p, q, r)); 19.2 Calculation of the Casson invariant; 19.3 Exercises; Conclusion; Bibliography; Index.

~РУБ DDC 514.34

Рубрики: Homology.

   Physics.


   Three-manifolds (Topology)


   Mathematics.


   Three-manifolds (Topology)


   MATHEMATICS / Topology


Аннотация: This textbook, now in its second revised and extended edition, introduces the topology of 3- and 4-dimensional manifolds. It also considers new developments especially related to the Heegaard Floer and contact homology. The book is accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic topology, including the fundamental group, basic homology theory, and Poincaré duality on manifolds.

DDC 510
B 52


    Best writing on mathematics 2016 / / Mircea Pitici, editor. - 1515/9781400885602. - Princeton, New Jersey : : Princeton University Press,, 2017. - 1 online resource ( час. мин.), 1515/9781400885602. - In English. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/397EE216-0B4C-46D8-859E-3D719829CFDB. - ISBN 1400885604 (electronic bk.). - ISBN 9781400885602 (electronic bk.)
Print version record.
    Содержание:
Cover; Title; Copyright; Dedication; Contents; Introduction; Mathematics and Teaching; In Defense of Pure Mathematics; G.H. Hardy: Mathematical Biologist; The Reasonable Ineffectiveness of Mathematics; Stacking Wine Bottles Revisited; The Way the Billiard Ball Bounces; The Intersection Game; Tonight! Epic Math Battles: Counting vs. Matching; Mathematicians Chase Moonshine's Shadow; The Impenetrable Proof; A Proof That Some Spaces Can't Be Cut; Einstein's First Proof; Why String Theory Still Offers Hope We Can Unify Physics; The Pioneering Role of the Sierpinski Gasket.
Fractals as PhotographsMath at the Met; Common Sense about the Common Core; Explaining Your Math: Unnecessary at Best, Encumbering at Worst; Teaching Applied Mathematics; Circular Reasoning: Who First Proved that C Divided by d Is a Constant?; A Medieval Mystery: Nicole Oresme's Concept of Curvitas; The Myth of Leibniz's Proof of the Fundamental Theorem of Calculus; The Spirograph and Mathematical Models from Nineteenth-Century Germany; What Does "Depth" Mean in Mathematics?; Finding Errors in Big Data; Programs and Probability; Lottery Perception.
Why Acknowledging Uncertainty Can Make You a Better ScientistFor Want of a Nail: Why Unnecessarily Long Tests May Be Impeding the Progress of Western Civilization; How to Write a General Interest Mathematics Book; Contributors; Notable Writings; Acknowledgments; Credits.

~РУБ DDC 510

Рубрики: Mathematics.

   MATHEMATICS--Essays.


   MATHEMATICS--Pre-Calculus.


   MATHEMATICS--Reference.


   Mathematics.


   MATHEMATICS / General


Аннотация: An anthology of the year's finest writing on mathematics from around the world, featuring promising new voices as well as some of the foremost names in mathematics.

Доп.точки доступа:
Pitici, Mircea, (1965-) \editor.\

Best writing on mathematics 2016 / [Электронный ресурс] / Mircea Pitici, editor., 2017. - 1 online resource с. (Введено оглавление)

9.

Best writing on mathematics 2016 / [Электронный ресурс] / Mircea Pitici, editor., 2017. - 1 online resource с. (Введено оглавление)


DDC 510
B 52


    Best writing on mathematics 2016 / / Mircea Pitici, editor. - 1515/9781400885602. - Princeton, New Jersey : : Princeton University Press,, 2017. - 1 online resource ( час. мин.), 1515/9781400885602. - In English. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/397EE216-0B4C-46D8-859E-3D719829CFDB. - ISBN 1400885604 (electronic bk.). - ISBN 9781400885602 (electronic bk.)
Print version record.
    Содержание:
Cover; Title; Copyright; Dedication; Contents; Introduction; Mathematics and Teaching; In Defense of Pure Mathematics; G.H. Hardy: Mathematical Biologist; The Reasonable Ineffectiveness of Mathematics; Stacking Wine Bottles Revisited; The Way the Billiard Ball Bounces; The Intersection Game; Tonight! Epic Math Battles: Counting vs. Matching; Mathematicians Chase Moonshine's Shadow; The Impenetrable Proof; A Proof That Some Spaces Can't Be Cut; Einstein's First Proof; Why String Theory Still Offers Hope We Can Unify Physics; The Pioneering Role of the Sierpinski Gasket.
Fractals as PhotographsMath at the Met; Common Sense about the Common Core; Explaining Your Math: Unnecessary at Best, Encumbering at Worst; Teaching Applied Mathematics; Circular Reasoning: Who First Proved that C Divided by d Is a Constant?; A Medieval Mystery: Nicole Oresme's Concept of Curvitas; The Myth of Leibniz's Proof of the Fundamental Theorem of Calculus; The Spirograph and Mathematical Models from Nineteenth-Century Germany; What Does "Depth" Mean in Mathematics?; Finding Errors in Big Data; Programs and Probability; Lottery Perception.
Why Acknowledging Uncertainty Can Make You a Better ScientistFor Want of a Nail: Why Unnecessarily Long Tests May Be Impeding the Progress of Western Civilization; How to Write a General Interest Mathematics Book; Contributors; Notable Writings; Acknowledgments; Credits.

~РУБ DDC 510

Рубрики: Mathematics.

   MATHEMATICS--Essays.


   MATHEMATICS--Pre-Calculus.


   MATHEMATICS--Reference.


   Mathematics.


   MATHEMATICS / General


Аннотация: An anthology of the year's finest writing on mathematics from around the world, featuring promising new voices as well as some of the foremost names in mathematics.

Доп.точки доступа:
Pitici, Mircea, (1965-) \editor.\

DDC 510
T 44


    The best writing on mathematics. / editor. Pitici, Mircea,.
   2017 /. - Princeton, N.J. : : Princeton University Press,, ©2018. - 1 online resource (xvi, 224 pages) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C90196E7-ADD6-40F1-BB2D-433D09FDAFCA. - ISBN 1400888557 (electronic bk.). - ISBN 9781400888559 (electronic bk.)
Online resource; title from electronic title page (EBSCOhost, viewed March 14, 2018).
Параллельные издания: Print version: : Best writing on mathematics. 2017. - Princeton ; Oxford : Princeton University Press, [2018]. - ISBN 9780691178639

~РУБ DDC 510

Рубрики: Mathematics.

   MATHEMATICS--Essays.


   MATHEMATICS--Pre-Calculus.


   MATHEMATICS--Reference.


   Mathematics.


   MATHEMATICS / General


Аннотация: "The year's finest mathematics writing from around the worldThis annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2017 makes available to a wide audience many articles not easily found anywhere else--and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Evelyn Lamb describes the excitement of searching for incomprehensibly large prime numbers, Jeremy Gray speculates about who would have won math's highest prize--the Fields Medal--in the nineteenth century, and Philip Davis looks at mathematical results and artifacts from a business and marketing viewpoint. In other essays, Noson Yanofsky explores the inherent limits of knowledge in mathematical thinking, Jo Boaler and Lang Chen reveal why finger-counting enhances children's receptivity to mathematical ideas, and Carlo Séquin and Raymond Shiau attempt to discover how the Renaissance painter Fra Luca Pacioli managed to convincingly depict his famous rhombicuboctahedron, a twenty-six-sided Archimedean solid. And there's much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us--and where it is headed"--Publisher's description.

Доп.точки доступа:
Pitici, Mircea, \editor.\
Pitici, Mircea, (1965-) \editor.\

The best writing on mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2017 /, ©2018. - 1 online resource (xvi, 224 pages) : с.

10.

The best writing on mathematics. [Электронный ресурс] / editor. Pitici, Mircea,. 2017 /, ©2018. - 1 online resource (xvi, 224 pages) : с.


DDC 510
T 44


    The best writing on mathematics. / editor. Pitici, Mircea,.
   2017 /. - Princeton, N.J. : : Princeton University Press,, ©2018. - 1 online resource (xvi, 224 pages) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C90196E7-ADD6-40F1-BB2D-433D09FDAFCA. - ISBN 1400888557 (electronic bk.). - ISBN 9781400888559 (electronic bk.)
Online resource; title from electronic title page (EBSCOhost, viewed March 14, 2018).
Параллельные издания: Print version: : Best writing on mathematics. 2017. - Princeton ; Oxford : Princeton University Press, [2018]. - ISBN 9780691178639

~РУБ DDC 510

Рубрики: Mathematics.

   MATHEMATICS--Essays.


   MATHEMATICS--Pre-Calculus.


   MATHEMATICS--Reference.


   Mathematics.


   MATHEMATICS / General


Аннотация: "The year's finest mathematics writing from around the worldThis annual anthology brings together the year's finest mathematics writing from around the world. Featuring promising new voices alongside some of the foremost names in the field, The Best Writing on Mathematics 2017 makes available to a wide audience many articles not easily found anywhere else--and you don't need to be a mathematician to enjoy them. These writings offer surprising insights into the nature, meaning, and practice of mathematics today. They delve into the history, philosophy, teaching, and everyday occurrences of math, and take readers behind the scenes of today's hottest mathematical debates. Here Evelyn Lamb describes the excitement of searching for incomprehensibly large prime numbers, Jeremy Gray speculates about who would have won math's highest prize--the Fields Medal--in the nineteenth century, and Philip Davis looks at mathematical results and artifacts from a business and marketing viewpoint. In other essays, Noson Yanofsky explores the inherent limits of knowledge in mathematical thinking, Jo Boaler and Lang Chen reveal why finger-counting enhances children's receptivity to mathematical ideas, and Carlo Séquin and Raymond Shiau attempt to discover how the Renaissance painter Fra Luca Pacioli managed to convincingly depict his famous rhombicuboctahedron, a twenty-six-sided Archimedean solid. And there's much, much more. In addition to presenting the year's most memorable writings on mathematics, this must-have anthology includes a bibliography of other notable writings and an introduction by the editor, Mircea Pitici. This book belongs on the shelf of anyone interested in where math has taken us--and where it is headed"--Publisher's description.

Доп.точки доступа:
Pitici, Mircea, \editor.\
Pitici, Mircea, (1965-) \editor.\

Page 1, Results: 13

 

All acquisitions for 
Or select a month