Electronic catalog

el cat en


 

База данных: Electronic library

Page 1, Results: 1

Отмеченные записи: 0

DDC 003.3
C 58

Ciaburro, Giuseppe,.
    Hands-on simulation modeling with Python : : develop simulation models to get accurate results and enhance decision-making processes / / Giuseppe Ciaburro. - Birmingham, UK : : Packt Publishing,, 2020. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/9C4C9EA4-37AB-4EFC-8A6B-362ED4B308DE . - ISBN 9781838988654. - ISBN 1838988653
Description based on online resource; title from cover (Safari, viewed October 27, 2020).
Параллельные издания: Print version: : Ciaburro, Giuseppe Hands-On Simulation Modeling with Python : Develop Simulation Models to Get Accurate Results and Enhance Decision-Making Processes. - Birmingham : Packt Publishing, Limited,c2020
    Содержание:
Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Numerical Simulation -- Chapter 1: Introducing Simulation Models -- Introducing simulation models -- Decision-making workflow -- Comparing modeling and simulation -- Pros and cons of simulation modeling -- Simulation modeling terminology -- Classifying simulation models -- Comparing static and dynamic models -- Comparing deterministic and stochastic models -- Comparing continuous and discrete models -- Approaching a simulation-based problem
Problem analysis -- Data collection -- Setting up the simulation model -- Simulation software selection -- Verification of the software solution -- Validation of the simulation model -- Simulation and analysis of results -- Dynamical systems modeling -- Managing workshop machinery -- Simple harmonic oscillator -- Predator-prey model -- Summary -- Chapter 2: Understanding Randomness and Random Numbers -- Technical requirements -- Stochastic processes -- Types of stochastic process -- Examples of stochastic processes -- The Bernoulli process -- Random walk -- The Poisson process
Random number simulation -- Probability distribution -- Properties of random numbers -- The pseudorandom number generator -- The pros and cons of a random number generator -- Random number generation algorithms -- Linear congruential generator -- Random numbers with uniform distribution -- Lagged Fibonacci generator -- Testing uniform distribution -- The chi-squared test -- Uniformity test -- Exploring generic methods for random distributions -- The inverse transform sampling method -- The acceptance-rejection method -- Random number generation using Python -- Introducing the random module
The random.random() function -- The random.seed() function -- The random.uniform() function -- The random.randint() function -- The random.choice() function -- The random.sample() function -- Generating real-valued distributions -- Summary -- Chapter 3: Probability and Data Generation Processes -- Technical requirements -- Explaining probability concepts -- Types of events -- Calculating probability -- Probability definition with an example -- Understanding Bayes' theorem -- Compound probability -- Bayes' theorem -- Exploring probability distributions -- Probability density function
Mean and variance -- Uniform distribution -- Binomial distribution -- Normal distribution -- Summary -- Section 2: Simulation Modeling Algorithms and Techniques -- Chapter 4: Exploring Monte Carlo Simulations -- Technical requirements -- Introducing Monte Carlo simulation -- Monte Carlo components -- First Monte Carlo application -- Monte Carlo applications -- Applying the Monte Carlo method for Pi estimation -- Understanding the central limit theorem -- Law of large numbers -- Central limit theorem -- Applying Monte Carlo simulation -- Generating probability distributions

~РУБ DDC 003.3

Рубрики: Python (Computer program language)

   Computer simulation.


   Simulation methods.


   Decision making--Data processing.


   Computer programming.


   Computer simulation.


   Python (Computer program language)


Аннотация: Developers working with the simulation models will be able to put their knowledge to work with this practical guide. You will work with real-world data to uncover various patterns used in complex systems using Python. The book provides a hands-on approach to implementation and associated methodologies to improve or optimize systems.

Ciaburro, Giuseppe,. Hands-on simulation modeling with Python : [Электронный ресурс] : develop simulation models to get accurate results and enhance decision-making processes / / Giuseppe Ciaburro., 2020. - 1 online resource (1 volume) : с. (Введено оглавление)

1.

Ciaburro, Giuseppe,. Hands-on simulation modeling with Python : [Электронный ресурс] : develop simulation models to get accurate results and enhance decision-making processes / / Giuseppe Ciaburro., 2020. - 1 online resource (1 volume) : с. (Введено оглавление)


DDC 003.3
C 58

Ciaburro, Giuseppe,.
    Hands-on simulation modeling with Python : : develop simulation models to get accurate results and enhance decision-making processes / / Giuseppe Ciaburro. - Birmingham, UK : : Packt Publishing,, 2020. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/9C4C9EA4-37AB-4EFC-8A6B-362ED4B308DE . - ISBN 9781838988654. - ISBN 1838988653
Description based on online resource; title from cover (Safari, viewed October 27, 2020).
Параллельные издания: Print version: : Ciaburro, Giuseppe Hands-On Simulation Modeling with Python : Develop Simulation Models to Get Accurate Results and Enhance Decision-Making Processes. - Birmingham : Packt Publishing, Limited,c2020
    Содержание:
Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Section 1: Getting Started with Numerical Simulation -- Chapter 1: Introducing Simulation Models -- Introducing simulation models -- Decision-making workflow -- Comparing modeling and simulation -- Pros and cons of simulation modeling -- Simulation modeling terminology -- Classifying simulation models -- Comparing static and dynamic models -- Comparing deterministic and stochastic models -- Comparing continuous and discrete models -- Approaching a simulation-based problem
Problem analysis -- Data collection -- Setting up the simulation model -- Simulation software selection -- Verification of the software solution -- Validation of the simulation model -- Simulation and analysis of results -- Dynamical systems modeling -- Managing workshop machinery -- Simple harmonic oscillator -- Predator-prey model -- Summary -- Chapter 2: Understanding Randomness and Random Numbers -- Technical requirements -- Stochastic processes -- Types of stochastic process -- Examples of stochastic processes -- The Bernoulli process -- Random walk -- The Poisson process
Random number simulation -- Probability distribution -- Properties of random numbers -- The pseudorandom number generator -- The pros and cons of a random number generator -- Random number generation algorithms -- Linear congruential generator -- Random numbers with uniform distribution -- Lagged Fibonacci generator -- Testing uniform distribution -- The chi-squared test -- Uniformity test -- Exploring generic methods for random distributions -- The inverse transform sampling method -- The acceptance-rejection method -- Random number generation using Python -- Introducing the random module
The random.random() function -- The random.seed() function -- The random.uniform() function -- The random.randint() function -- The random.choice() function -- The random.sample() function -- Generating real-valued distributions -- Summary -- Chapter 3: Probability and Data Generation Processes -- Technical requirements -- Explaining probability concepts -- Types of events -- Calculating probability -- Probability definition with an example -- Understanding Bayes' theorem -- Compound probability -- Bayes' theorem -- Exploring probability distributions -- Probability density function
Mean and variance -- Uniform distribution -- Binomial distribution -- Normal distribution -- Summary -- Section 2: Simulation Modeling Algorithms and Techniques -- Chapter 4: Exploring Monte Carlo Simulations -- Technical requirements -- Introducing Monte Carlo simulation -- Monte Carlo components -- First Monte Carlo application -- Monte Carlo applications -- Applying the Monte Carlo method for Pi estimation -- Understanding the central limit theorem -- Law of large numbers -- Central limit theorem -- Applying Monte Carlo simulation -- Generating probability distributions

~РУБ DDC 003.3

Рубрики: Python (Computer program language)

   Computer simulation.


   Simulation methods.


   Decision making--Data processing.


   Computer programming.


   Computer simulation.


   Python (Computer program language)


Аннотация: Developers working with the simulation models will be able to put their knowledge to work with this practical guide. You will work with real-world data to uncover various patterns used in complex systems using Python. The book provides a hands-on approach to implementation and associated methodologies to improve or optimize systems.

Page 1, Results: 1

 

All acquisitions for 
Or select a month