База данных: ЭБС Лань
Страница 1, Результатов: 1
Отмеченные записи: 0
1.

Подробнее
519.6
Марчук, Г. И.
Методы вычислительной математики / Г. И. Марчук. - 4-е изд., стер. - Санкт-Петербург : Лань, 2022. - 608 с. . - ISBN 978-5-8114-0892-4
Книга из коллекции Лань - Математика
. - https://e.lanbook.com/book/167761
ББК 22.193
Рубрики: Математика--Методы вычислительной математики--Лань
Кл.слова (ненормированные):
автоматизация -- автор мифи -- аппроксимация -- возмущений теория -- вычислительная математика -- галеркина метод -- дирихле задача -- дифференциальные уравнения -- диффузии уравнение -- задачи математической физики -- задачи решения -- интерполяция -- интерполяция сеточных функций -- математика -- математическая физика -- метод наименьших квадратов -- метод шварца -- метод итерационный -- методы возмущений -- методы оптимизации -- методы решения нестационарных задач -- методы решения стационарных задач -- методы шварца -- нестационарные задачи -- областей фиктивных метод -- обратные задачи -- понтрягина максимум -- программирование выпуклое -- разностные схемы -- расщепления метод -- ритца метод -- сеточные функции -- сопряженные уравнения -- сплайнов теория -- сходимости теорема -- теория разностных схем -- уравнение гиперболическое -- учебники для вузов -- учебные пособия -- фредгольма уравнение -- численное дифференцирование -- численное интегрирование -- численные методы решений -- шварца метод -- эвм
Аннотация: В учебном пособии рассмотрены методы построения разностных схем для дифференциальных уравнений, интерполяция сеточных функций, методы решения стационарных и нестационарных задач математической физики, методы Шварца и разделения области, методы возмущений, методы оптимизации, повышение точности приближенных решений. Основное внимание уделяется сложным задачам математической физики, которые в процессе решения сводятся, как правило, к более простым, допускающим реализацию алгоритмов на ЭВМ. Рассмотрены многие современные подходы к численным методам. Учебное пособие предназначено для студентов старших курсов и аспирантов по специальности «Прикладная математика», также может быть полезно для научных работников в области вычислительной математики.
Марчук, Г. И.
Методы вычислительной математики / Г. И. Марчук. - 4-е изд., стер. - Санкт-Петербург : Лань, 2022. - 608 с. . - ISBN 978-5-8114-0892-4
Книга из коллекции Лань - Математика
. - https://e.lanbook.com/book/167761
УДК |
Рубрики: Математика--Методы вычислительной математики--Лань
Кл.слова (ненормированные):
автоматизация -- автор мифи -- аппроксимация -- возмущений теория -- вычислительная математика -- галеркина метод -- дирихле задача -- дифференциальные уравнения -- диффузии уравнение -- задачи математической физики -- задачи решения -- интерполяция -- интерполяция сеточных функций -- математика -- математическая физика -- метод наименьших квадратов -- метод шварца -- метод итерационный -- методы возмущений -- методы оптимизации -- методы решения нестационарных задач -- методы решения стационарных задач -- методы шварца -- нестационарные задачи -- областей фиктивных метод -- обратные задачи -- понтрягина максимум -- программирование выпуклое -- разностные схемы -- расщепления метод -- ритца метод -- сеточные функции -- сопряженные уравнения -- сплайнов теория -- сходимости теорема -- теория разностных схем -- уравнение гиперболическое -- учебники для вузов -- учебные пособия -- фредгольма уравнение -- численное дифференцирование -- численное интегрирование -- численные методы решений -- шварца метод -- эвм
Аннотация: В учебном пособии рассмотрены методы построения разностных схем для дифференциальных уравнений, интерполяция сеточных функций, методы решения стационарных и нестационарных задач математической физики, методы Шварца и разделения области, методы возмущений, методы оптимизации, повышение точности приближенных решений. Основное внимание уделяется сложным задачам математической физики, которые в процессе решения сводятся, как правило, к более простым, допускающим реализацию алгоритмов на ЭВМ. Рассмотрены многие современные подходы к численным методам. Учебное пособие предназначено для студентов старших курсов и аспирантов по специальности «Прикладная математика», также может быть полезно для научных работников в области вычислительной математики.
Страница 1, Результатов: 1