Электронный каталог


 

База данных: ЭБС Лань

Страница 1, Результатов: 3

Отмеченные записи: 0

517.98(075)
Люстерник, Л. А.
    Краткий курс функционального анализа / Л. А. Люстерник, В. И. Соболев. - 2-е изд.,стер. - Санкт-Петербург : Лань, 2022. - 272 с.. - ISBN 978-5-8114-0976-1
Книга из коллекции Лань - Математика
. - https://e.lanbook.com/book/167757

УДК
ББК 22.162я73

Рубрики: Математика--Функциональный анализ--Лань

Кл.слова (ненормированные):
учебное пособие -- функциональный анализ -- математика -- дифференциальное исчисление -- линейные операторы -- линейные функционалы -- алгебра -- банаха -- банаха - хана теорема -- выпуклое -- геоморфизм банаха теорема -- гильбертово -- гильбертово пространство -- дифференциал -- дифференциал фреше -- дифференциальное и интегральное исчисление -- дифференциальные исчисления -- зависимость функциональная -- интеграл -- интегральное исчисление -- интегральные исчисления -- лебега -- лебега интеграл -- лебега интегралы -- линейное -- линейные нормированные пространства -- линейные операторные уравнения -- линейные пространства -- линейные пространства интегралы метрические пространства линейные операторы линейные функционалы непрерывные операторы самосопряжённые операторы математический анализ учебные пособия -- линейные топологические пространства -- мера -- метод ньютона -- метрическое -- множество -- непрерывные операторы -- нормированное -- ограниченные самосопряженные операторы -- оператор -- оператор унитарный -- принцип шаудера -- производная -- производная гато -- производная фреше -- пространство -- пространство банаха с базисом -- пространство сепарабельное -- самосопряженные -- самосопряженные операторы -- сепарабельные -- спектральное разложение операторов -- теорема банаха-хана -- теорема о локальном обращении -- теорема о неявной функции -- топологическое -- топология -- упорядоченность -- учебник и пособие -- учебные пособия -- формула тейлора -- фреше -- фреше производная -- функционал -- функциональная зависимость -- функция неявная -- шаудера точка
Аннотация: Книга написана в соответствии с программой по курсу функционального анализа для университетов. Изложение ведется на высоком методическом и научном уровне и сопровождается большим числом интересных примеров и приложений. Приведены упражнения для самостоятельной работы. Рассматриваются непрерывные операторы и уравнения с ними, дифференциальное и интегральное исчисление в линейных нормированных пространствах, спектральная теория ограниченных самосопряженных операторов в гильбертовых пространствах. Учебное пособие предназначается для студентов математических и физических специальностей.

Доп.точки доступа:
Соболев, В. И.

Люстерник, Л. А. Краткий курс функционального анализа [Электронный ресурс] , 2022. - 272 с.

1.

Люстерник, Л. А. Краткий курс функционального анализа [Электронный ресурс] , 2022. - 272 с.

Открыть исходную запись


517.98(075)
Люстерник, Л. А.
    Краткий курс функционального анализа / Л. А. Люстерник, В. И. Соболев. - 2-е изд.,стер. - Санкт-Петербург : Лань, 2022. - 272 с.. - ISBN 978-5-8114-0976-1
Книга из коллекции Лань - Математика
. - https://e.lanbook.com/book/167757

УДК
ББК 22.162я73

Рубрики: Математика--Функциональный анализ--Лань

Кл.слова (ненормированные):
учебное пособие -- функциональный анализ -- математика -- дифференциальное исчисление -- линейные операторы -- линейные функционалы -- алгебра -- банаха -- банаха - хана теорема -- выпуклое -- геоморфизм банаха теорема -- гильбертово -- гильбертово пространство -- дифференциал -- дифференциал фреше -- дифференциальное и интегральное исчисление -- дифференциальные исчисления -- зависимость функциональная -- интеграл -- интегральное исчисление -- интегральные исчисления -- лебега -- лебега интеграл -- лебега интегралы -- линейное -- линейные нормированные пространства -- линейные операторные уравнения -- линейные пространства -- линейные пространства интегралы метрические пространства линейные операторы линейные функционалы непрерывные операторы самосопряжённые операторы математический анализ учебные пособия -- линейные топологические пространства -- мера -- метод ньютона -- метрическое -- множество -- непрерывные операторы -- нормированное -- ограниченные самосопряженные операторы -- оператор -- оператор унитарный -- принцип шаудера -- производная -- производная гато -- производная фреше -- пространство -- пространство банаха с базисом -- пространство сепарабельное -- самосопряженные -- самосопряженные операторы -- сепарабельные -- спектральное разложение операторов -- теорема банаха-хана -- теорема о локальном обращении -- теорема о неявной функции -- топологическое -- топология -- упорядоченность -- учебник и пособие -- учебные пособия -- формула тейлора -- фреше -- фреше производная -- функционал -- функциональная зависимость -- функция неявная -- шаудера точка
Аннотация: Книга написана в соответствии с программой по курсу функционального анализа для университетов. Изложение ведется на высоком методическом и научном уровне и сопровождается большим числом интересных примеров и приложений. Приведены упражнения для самостоятельной работы. Рассматриваются непрерывные операторы и уравнения с ними, дифференциальное и интегральное исчисление в линейных нормированных пространствах, спектральная теория ограниченных самосопряженных операторов в гильбертовых пространствах. Учебное пособие предназначается для студентов математических и физических специальностей.

Доп.точки доступа:
Соболев, В. И.

517.98(075)
Гуревич, А. П.
    Сборник задач по функциональному анализу / А. П. Гуревич, В. В. Корнев, А. П. Хромов. - 2-е изд., испр. - Санкт-Петербург : Лань, 2022. - 192 с.. - ISBN 978-5-8114-1274-7
Книга из коллекции Лань - Математика. Допущено УМО по классическому университетскому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальностям 010101 — «Математика», 010901 — «Механика» и по направлению 010200 — «Математика. Прикладная математика.
. - https://e.lanbook.com/book/168380

УДК
ББК 22.162я73

Рубрики: Математика--Математический анализ--Лань

Кл.слова (ненормированные):
пространства -- множества -- сборники задач -- доказательства -- задачники -- арцела теорема -- вейерштрасса теорема -- гильбертовы -- линейный -- метрическое -- непрерывный -- нормированное -- оператор -- пространство -- пространство банахово -- пространство евклидово -- сепарабельные -- сопряженный -- тождество -- учебник и пособие * -- функционал -- функциональный анализ -- функциональный анализ метрические пространства -- хаусдорфа критерий -- элемент последовательность
Аннотация: Учебное пособие содержит большое количество задач и примеров по основным разделам функционального анализа в рамках университетского курса, а также краткие необходимые теоретические сведения. Наиболее трудные задачи снабжены решениями. Цель пособия — помочь студентам в освоении важнейших понятий и определений функционального анализа и облегчить преподавателям организацию самостоятельной и индивидуальной работы со студентами. Для студентов 3-4 курсов математических специальностей.

Доп.точки доступа:
Корнев, В. В.
Хромов, А. П.

Гуревич, А. П. Сборник задач по функциональному анализу [Электронный ресурс] , 2022. - 192 с.

2.

Гуревич, А. П. Сборник задач по функциональному анализу [Электронный ресурс] , 2022. - 192 с.

Открыть исходную запись


517.98(075)
Гуревич, А. П.
    Сборник задач по функциональному анализу / А. П. Гуревич, В. В. Корнев, А. П. Хромов. - 2-е изд., испр. - Санкт-Петербург : Лань, 2022. - 192 с.. - ISBN 978-5-8114-1274-7
Книга из коллекции Лань - Математика. Допущено УМО по классическому университетскому образованию в качестве учебного пособия для студентов высших учебных заведений, обучающихся по специальностям 010101 — «Математика», 010901 — «Механика» и по направлению 010200 — «Математика. Прикладная математика.
. - https://e.lanbook.com/book/168380

УДК
ББК 22.162я73

Рубрики: Математика--Математический анализ--Лань

Кл.слова (ненормированные):
пространства -- множества -- сборники задач -- доказательства -- задачники -- арцела теорема -- вейерштрасса теорема -- гильбертовы -- линейный -- метрическое -- непрерывный -- нормированное -- оператор -- пространство -- пространство банахово -- пространство евклидово -- сепарабельные -- сопряженный -- тождество -- учебник и пособие * -- функционал -- функциональный анализ -- функциональный анализ метрические пространства -- хаусдорфа критерий -- элемент последовательность
Аннотация: Учебное пособие содержит большое количество задач и примеров по основным разделам функционального анализа в рамках университетского курса, а также краткие необходимые теоретические сведения. Наиболее трудные задачи снабжены решениями. Цель пособия — помочь студентам в освоении важнейших понятий и определений функционального анализа и облегчить преподавателям организацию самостоятельной и индивидуальной работы со студентами. Для студентов 3-4 курсов математических специальностей.

Доп.точки доступа:
Корнев, В. В.
Хромов, А. П.


Сибиряков, Г. В.
    Метрические пространства / Г. В. Сибиряков, Ю. А. Мартынов. - 2-е изд., испр. - Санкт-Петербург : Лань, 2022. - 184 с.. - ISBN 978-5-8114-2160-2
Книга из коллекции Лань - Математика. Допущено УМО по классическому университетскому образованию в качестве учебного пособия для студентов вузов, обучающихся по направлениям: «Математика», «Математика и компьютерные науки», «Механика и математическое моделирование»
. - https://e.lanbook.com/book/168939

Рубрики: Математика--Математический анализ--Лань

Кл.слова (ненормированные):
евклидовы пространства -- метрические пространства -- непрерывные функции -- принцип неподвижной точки -- сепарабельные пространства -- теорема бэра
Аннотация: В данном учебном пособии излагаются основные вопросы теории метрических пространств, в том числе и такие, которые зачастую остаются за пределами курсов математического анализа, читаемых в университетах: сепарабельность, теорема Бэра о категориях, равномерная непрерывность отображений метрических пространств и др. Во всех разделах приведены примеры, как поясняющие общие определения, так и выявляющие важные частные случаи. Для студентов высших учебных заведений, обучающихся по направлениям «Математика», «Математика и компьютерные науки», «Механика и математическое моделирование».

Доп.точки доступа:
Мартынов, Ю. А.

Сибиряков, Г. В. Метрические пространства [Электронный ресурс] , 2022. - 184 с.

3.

Сибиряков, Г. В. Метрические пространства [Электронный ресурс] , 2022. - 184 с.

Открыть исходную запись



Сибиряков, Г. В.
    Метрические пространства / Г. В. Сибиряков, Ю. А. Мартынов. - 2-е изд., испр. - Санкт-Петербург : Лань, 2022. - 184 с.. - ISBN 978-5-8114-2160-2
Книга из коллекции Лань - Математика. Допущено УМО по классическому университетскому образованию в качестве учебного пособия для студентов вузов, обучающихся по направлениям: «Математика», «Математика и компьютерные науки», «Механика и математическое моделирование»
. - https://e.lanbook.com/book/168939

Рубрики: Математика--Математический анализ--Лань

Кл.слова (ненормированные):
евклидовы пространства -- метрические пространства -- непрерывные функции -- принцип неподвижной точки -- сепарабельные пространства -- теорема бэра
Аннотация: В данном учебном пособии излагаются основные вопросы теории метрических пространств, в том числе и такие, которые зачастую остаются за пределами курсов математического анализа, читаемых в университетах: сепарабельность, теорема Бэра о категориях, равномерная непрерывность отображений метрических пространств и др. Во всех разделах приведены примеры, как поясняющие общие определения, так и выявляющие важные частные случаи. Для студентов высших учебных заведений, обучающихся по направлениям «Математика», «Математика и компьютерные науки», «Механика и математическое моделирование».

Доп.точки доступа:
Мартынов, Ю. А.

Страница 1, Результатов: 3

 

Все поступления за 
Или выберите интересующий месяц