База данных: ЭБС Лань
Страница 1, Результатов: 1
Отмеченные записи: 0
1.
Подробнее
22.193я73
Киреев, В. И.
Численные методы в примерах и задачах / В. И. Киреев, А. В. Пантелеев. - 4-е изд., испр. - Санкт-Петербург : Лань, 2022. - 448 с. . - ISBN 978-5-8114-1888-6
Книга из коллекции Лань - Математика. Допущено УМО по образованию в области прикладной математики и управления качеством в качестве учебного пособия для студентов вузов, обучающихся по направлению 231300 — «Прикладная математика»
. - https://e.lanbook.com/book/168828
ББК 22.193я73
Рубрики: Математика--Методы вычислительной математики--Лань
Кл.слова (ненормированные):
алгебраические уравнения -- вычислительная математика -- вычислительные методы -- дифференциальные уравнения -- задачи коши -- коши задачи -- краевые задачи -- линейные алгебраические уравнения -- математический анализ -- методы численного дифференцирования -- методы численного интегрирования -- нелинейные уравнения -- теория приближений -- уравнения математической физики -- численные методы -- численные методы алгебры -- численные методы решения уравнений -- численный анализ
Аннотация: Пособие охватывает классические разделы численного анализа: методы алгебры, теории приближения функций одной переменной с их приложениями, разностные методы решения задач Коши и краевых задач для обыкновенных дифференциальных уравнений, численные методы решения уравнений математической физики с двумя и тремя независимыми переменными. Наряду с традиционными методами изложены новые экономичные, устойчивые и простые в реализации методы приближения функций, численного дифференцирования и интегрирования, решения задачи Коши, основанные на применении интегрально-дифференциальных сплайнов. В каждом разделе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения. Учебное пособие поддерживает компетентностную модель обучения: содержит модели требуемых знаний и умений решать типовые задачи предмета. Для студентов, обучающихся по направлению «Прикладная математика» и для других математических, инженерно-технических и авиационных специальностей вузов, а также для аспирантов и научных работников.
Доп.точки доступа:
Пантелеев, А. В.
Киреев, В. И.
Численные методы в примерах и задачах / В. И. Киреев, А. В. Пантелеев. - 4-е изд., испр. - Санкт-Петербург : Лань, 2022. - 448 с. . - ISBN 978-5-8114-1888-6
Книга из коллекции Лань - Математика. Допущено УМО по образованию в области прикладной математики и управления качеством в качестве учебного пособия для студентов вузов, обучающихся по направлению 231300 — «Прикладная математика»
. - https://e.lanbook.com/book/168828
Рубрики: Математика--Методы вычислительной математики--Лань
Кл.слова (ненормированные):
алгебраические уравнения -- вычислительная математика -- вычислительные методы -- дифференциальные уравнения -- задачи коши -- коши задачи -- краевые задачи -- линейные алгебраические уравнения -- математический анализ -- методы численного дифференцирования -- методы численного интегрирования -- нелинейные уравнения -- теория приближений -- уравнения математической физики -- численные методы -- численные методы алгебры -- численные методы решения уравнений -- численный анализ
Аннотация: Пособие охватывает классические разделы численного анализа: методы алгебры, теории приближения функций одной переменной с их приложениями, разностные методы решения задач Коши и краевых задач для обыкновенных дифференциальных уравнений, численные методы решения уравнений математической физики с двумя и тремя независимыми переменными. Наряду с традиционными методами изложены новые экономичные, устойчивые и простые в реализации методы приближения функций, численного дифференцирования и интегрирования, решения задачи Коши, основанные на применении интегрально-дифференциальных сплайнов. В каждом разделе кратко изложены основные теоретические сведения, приведены решения типовых примеров и задачи для самостоятельного решения. Учебное пособие поддерживает компетентностную модель обучения: содержит модели требуемых знаний и умений решать типовые задачи предмета. Для студентов, обучающихся по направлению «Прикладная математика» и для других математических, инженерно-технических и авиационных специальностей вузов, а также для аспирантов и научных работников.
Доп.точки доступа:
Пантелеев, А. В.
Страница 1, Результатов: 1