Электронный каталог


 

База данных: ЭБС EBSCO eBook

Страница 1, Результатов: 38

Отмеченные записи: 0

DDC 621.36/7028557
B 57


    Big data analytics for satellite image processing and remote sensing / / P. Swarnalatha and Prabu Sevugan, editors. - Hershey, PA : : Engineering Science Reference,, [2018]. - 1 online resource. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C1D4A4F8-1AC9-4578-A2F7-4FA2E0DE5187. - ISBN 9781522536444 (electronic bk.). - ISBN 1522536442 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Big data analytics for satellite image processing and remote sensing. - Hershey, PA : Engineering Science Reference, [2018]. - ISBN 9781522536437

~РУБ DDC 621.36/7028557

Рубрики: Geospatial data.

   Big data.


   Artificial satellites in remote sensing.


   Image processing--Digital techniques.


   Artificial satellites--Optical observations--Data processing.


   TECHNOLOGY & ENGINEERING / Mechanical


Аннотация: "This book explores the difficulties and challenges that various fields have faced in implementing the technologies and applications. It addresses different aspects of using big data upon image processing for remote sensing and related topics and it explores the impact of such technologies on the applications in which this advanced technology is being implemented"--

Доп.точки доступа:
Swarnalatha, P., (Purushotham), (1977-) \editor.\
Sevugan, Prabu, (1981-) \editor.\

Big data analytics for satellite image processing and remote sensing / [Электронный ресурс] / P. Swarnalatha and Prabu Sevugan, editors., [2018]. - 1 online resource. с.

1.

Big data analytics for satellite image processing and remote sensing / [Электронный ресурс] / P. Swarnalatha and Prabu Sevugan, editors., [2018]. - 1 online resource. с.


DDC 621.36/7028557
B 57


    Big data analytics for satellite image processing and remote sensing / / P. Swarnalatha and Prabu Sevugan, editors. - Hershey, PA : : Engineering Science Reference,, [2018]. - 1 online resource. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C1D4A4F8-1AC9-4578-A2F7-4FA2E0DE5187. - ISBN 9781522536444 (electronic bk.). - ISBN 1522536442 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Big data analytics for satellite image processing and remote sensing. - Hershey, PA : Engineering Science Reference, [2018]. - ISBN 9781522536437

~РУБ DDC 621.36/7028557

Рубрики: Geospatial data.

   Big data.


   Artificial satellites in remote sensing.


   Image processing--Digital techniques.


   Artificial satellites--Optical observations--Data processing.


   TECHNOLOGY & ENGINEERING / Mechanical


Аннотация: "This book explores the difficulties and challenges that various fields have faced in implementing the technologies and applications. It addresses different aspects of using big data upon image processing for remote sensing and related topics and it explores the impact of such technologies on the applications in which this advanced technology is being implemented"--

Доп.точки доступа:
Swarnalatha, P., (Purushotham), (1977-) \editor.\
Sevugan, Prabu, (1981-) \editor.\

DDC 610.72/4
S 88

Strasser, Bruno J. ,
    Collecting experiments : : making big data biology / / Bruno J. Strasser. - Chicago : : The University of Chicago Press,, 2019. - 1 online resource (pages). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/859DA899-59CC-476F-9073-250136FE2AF5. - ISBN 9780226635187 (electronic bk.). - ISBN 022663518X (electronic bk.)
Print version record.
Параллельные издания: Print version: : Strasser, Bruno J. Collecting experiments. - Chicago : The University of Chicago Press, 2019. - ISBN 9780226634999
    Содержание:
Introduction -- Biology, computers, data -- Biology transformed -- Naturalists vs. experimentalists? -- The laboratory and experimentalism -- The museum and natural history -- Live museums -- Blood banks -- Data atlases -- Virtual collections -- Public databases -- Open science -- Conclusion. The end of model organisms? ; The new politics of knowledge.

~РУБ DDC 610.72/4

Рубрики: Biology, Experimental--Data processing.

   Biology, Experimental--Databases.


   Biological models--Data processing.


   Biological specimens--Collection and preservation--Technological innovations.


   Big data.


   Big data.


   Biological models--Data processing.


   Biology, Experimental--Data processing.


   HEALTH & FITNESS / Holism


   HEALTH & FITNESS / Reference


   MEDICAL / Alternative Medicine


   MEDICAL / Atlases


   MEDICAL / Essays


   MEDICAL / Family & General Practice


   MEDICAL / Holistic Medicine


   MEDICAL / Osteopathy


Strasser, Bruno J., Collecting experiments : [Электронный ресурс] : making big data biology / / Bruno J. Strasser., 2019. - 1 online resource (pages) с. (Введено оглавление)

2.

Strasser, Bruno J., Collecting experiments : [Электронный ресурс] : making big data biology / / Bruno J. Strasser., 2019. - 1 online resource (pages) с. (Введено оглавление)


DDC 610.72/4
S 88

Strasser, Bruno J. ,
    Collecting experiments : : making big data biology / / Bruno J. Strasser. - Chicago : : The University of Chicago Press,, 2019. - 1 online resource (pages). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/859DA899-59CC-476F-9073-250136FE2AF5. - ISBN 9780226635187 (electronic bk.). - ISBN 022663518X (electronic bk.)
Print version record.
Параллельные издания: Print version: : Strasser, Bruno J. Collecting experiments. - Chicago : The University of Chicago Press, 2019. - ISBN 9780226634999
    Содержание:
Introduction -- Biology, computers, data -- Biology transformed -- Naturalists vs. experimentalists? -- The laboratory and experimentalism -- The museum and natural history -- Live museums -- Blood banks -- Data atlases -- Virtual collections -- Public databases -- Open science -- Conclusion. The end of model organisms? ; The new politics of knowledge.

~РУБ DDC 610.72/4

Рубрики: Biology, Experimental--Data processing.

   Biology, Experimental--Databases.


   Biological models--Data processing.


   Biological specimens--Collection and preservation--Technological innovations.


   Big data.


   Big data.


   Biological models--Data processing.


   Biology, Experimental--Data processing.


   HEALTH & FITNESS / Holism


   HEALTH & FITNESS / Reference


   MEDICAL / Alternative Medicine


   MEDICAL / Atlases


   MEDICAL / Essays


   MEDICAL / Family & General Practice


   MEDICAL / Holistic Medicine


   MEDICAL / Osteopathy


DDC 363.12/5
M 84

Moridpour, Sara, (1980-).
    Big data analytics in traffic and transportation engineering : : emerging research and opportunities / / by Sara Moridpour. - Hershey, PA : : Engineering Science Reference,, ©2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/72BD0CAA-C0CF-4FAF-A64B-AC716719D3F9. - ISBN 9781522579441 (electronic bk.). - ISBN 1522579443 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Moridpour, Sara, 1980- Big data analytics in traffic and transportation engineering. - Hershey, PA : Engineering Science Reference, [2019]. - ISBN 9781522579434
    Содержание:
Access to public transport in metropolitan areas -- Bikeability in metropolitan areas -- Walkability in metropolitan areas -- Applying decision tree approaches on vehicle-pedestrian crashes -- Neighbourhood influences on vehicle-pedestrian crash severity -- Spatial and temporal distribution of pedestrian crashes -- Contributing factors on vehicle-pedestrian crash severity of school-aged pedestrians.

~РУБ DDC 363.12/5

Рубрики: Pedestrian accidents--Statistical methods.--Australia--Melbourne (Vic.)

   Traffic accidents--Statistical methods.--Australia--Melbourne (Vic.)


   Roads--Interchanges and intersections--Safety measures--Statistical methods.


   Big data--Australia--Melbourne (Vic.)


   Big data.


   Traffic accidents--Statistical methods.


   BUSINESS & ECONOMICS / Infrastructure


   SOCIAL SCIENCE / General


   Victoria--Melbourne.
Аннотация: "This book identifies the factors contributing to the severity of vehicle-pedestrian crashes at mid-blocks. It examines the influence of the socioeconomic factors of the neighborhoods where road users live (residency neighborhood) and where crashes occur (crash neighborhood) on vehicle-pedestrian crash severity, while controlling for the influences of roadway, road user, vehicle and environmental factors"--Provided by publisher.

Moridpour, Sara,. Big data analytics in traffic and transportation engineering : [Электронный ресурс] : emerging research and opportunities / / by Sara Moridpour., ©2019. - 1 online resource. с. (Введено оглавление)

3.

Moridpour, Sara,. Big data analytics in traffic and transportation engineering : [Электронный ресурс] : emerging research and opportunities / / by Sara Moridpour., ©2019. - 1 online resource. с. (Введено оглавление)


DDC 363.12/5
M 84

Moridpour, Sara, (1980-).
    Big data analytics in traffic and transportation engineering : : emerging research and opportunities / / by Sara Moridpour. - Hershey, PA : : Engineering Science Reference,, ©2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/72BD0CAA-C0CF-4FAF-A64B-AC716719D3F9. - ISBN 9781522579441 (electronic bk.). - ISBN 1522579443 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Moridpour, Sara, 1980- Big data analytics in traffic and transportation engineering. - Hershey, PA : Engineering Science Reference, [2019]. - ISBN 9781522579434
    Содержание:
Access to public transport in metropolitan areas -- Bikeability in metropolitan areas -- Walkability in metropolitan areas -- Applying decision tree approaches on vehicle-pedestrian crashes -- Neighbourhood influences on vehicle-pedestrian crash severity -- Spatial and temporal distribution of pedestrian crashes -- Contributing factors on vehicle-pedestrian crash severity of school-aged pedestrians.

~РУБ DDC 363.12/5

Рубрики: Pedestrian accidents--Statistical methods.--Australia--Melbourne (Vic.)

   Traffic accidents--Statistical methods.--Australia--Melbourne (Vic.)


   Roads--Interchanges and intersections--Safety measures--Statistical methods.


   Big data--Australia--Melbourne (Vic.)


   Big data.


   Traffic accidents--Statistical methods.


   BUSINESS & ECONOMICS / Infrastructure


   SOCIAL SCIENCE / General


   Victoria--Melbourne.
Аннотация: "This book identifies the factors contributing to the severity of vehicle-pedestrian crashes at mid-blocks. It examines the influence of the socioeconomic factors of the neighborhoods where road users live (residency neighborhood) and where crashes occur (crash neighborhood) on vehicle-pedestrian crash severity, while controlling for the influences of roadway, road user, vehicle and environmental factors"--Provided by publisher.

DDC 307.1/2160285
S 78


    Spatial planning in the big data revolution / / Angioletta Voghera and Luigi La Riccia, editors. - 4018/978-1-5225-7927-4. - Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : : IGI Global,, [2019]. - 1 online resource (27 PDFs (359 pages)) ( час. мин.), 4018/978-1-5225-7927-4. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DAB7BEC0-2C87-4A13-9F85-4040C5B14D79. - ISBN 1522579281. - ISBN 9781522579281 (electronic bk.)
Description based on title screen (IGI Global, viewed 02/23/2019).
Параллельные издания: Print version: :
    Содержание:
Chapter 1. Section placeholder ; Chapter 2. Towards knowledge-based spatial planning ; Chapter 3. Modelling and assessing spatial big data: use cases of the openstreetmap full-history dump ; Chapter 4. Big data and high-performance analyses and processes ; Chapter 5. IoT platforms and technologies driving spatial planning and analytics ; Chapter 6. The walkability of the cities: improving it through the reuse of available data and raster analyses ; Chapter 7. Section placeholder ; Chapter 8. Defining energy criteria in the absence of open data: a stakeholder-oriented approach based on multi-criteria analysis (MCA) ; Chapter 9. Can big data support smart(er) evaluation?: theoretical consideration starting from the territorial integrated evaluation approach ; Chapter 10. Ecosystem service evaluation for landscape planning policies: addressing data availability issues ; Chapter 11. Section placeholder ; Chapter 12. Semantic spatial representation and collaborative mapping in urban and regional planning: the ontomap community project ; Chapter 13. Researching and enabling youth geographies in the digital and material city: the Teencarto project ; Chapter 14. A territorial dimension can be useful for managing long-term regional road safety ; Chapter 15. Defining urban planning strategy through social media application ; Chapter 16. A planning model for cognitive cities: spatial cognition through a participatory approach.

~РУБ DDC 307.1/2160285

Рубрики: Public spaces--Planning--Data processing.

   City planning--Data processing.


   Geographic information systems.


   Big data.


   SOCIAL SCIENCE / Sociology / Urban


Аннотация: "This book explores in a systematic way the themes of big data and the spatial analysis, with theoretical and operative recommendations for urban planning. It also brings together different work methodologies that combine the potential of large data analysis with GIS applications in dedicated tools specifically for sectoral, territorial, environmental, transport, energy, real estate and landscape assessment"--

Доп.точки доступа:
Voghera, Angioletta, \editor.\
La Riccia, Luigi, (1977-) \editor.\
IGI Global,

Spatial planning in the big data revolution / [Электронный ресурс] / Angioletta Voghera and Luigi La Riccia, editors., [2019]. - 1 online resource (27 PDFs (359 pages)) с. (Введено оглавление)

4.

Spatial planning in the big data revolution / [Электронный ресурс] / Angioletta Voghera and Luigi La Riccia, editors., [2019]. - 1 online resource (27 PDFs (359 pages)) с. (Введено оглавление)


DDC 307.1/2160285
S 78


    Spatial planning in the big data revolution / / Angioletta Voghera and Luigi La Riccia, editors. - 4018/978-1-5225-7927-4. - Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : : IGI Global,, [2019]. - 1 online resource (27 PDFs (359 pages)) ( час. мин.), 4018/978-1-5225-7927-4. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DAB7BEC0-2C87-4A13-9F85-4040C5B14D79. - ISBN 1522579281. - ISBN 9781522579281 (electronic bk.)
Description based on title screen (IGI Global, viewed 02/23/2019).
Параллельные издания: Print version: :
    Содержание:
Chapter 1. Section placeholder ; Chapter 2. Towards knowledge-based spatial planning ; Chapter 3. Modelling and assessing spatial big data: use cases of the openstreetmap full-history dump ; Chapter 4. Big data and high-performance analyses and processes ; Chapter 5. IoT platforms and technologies driving spatial planning and analytics ; Chapter 6. The walkability of the cities: improving it through the reuse of available data and raster analyses ; Chapter 7. Section placeholder ; Chapter 8. Defining energy criteria in the absence of open data: a stakeholder-oriented approach based on multi-criteria analysis (MCA) ; Chapter 9. Can big data support smart(er) evaluation?: theoretical consideration starting from the territorial integrated evaluation approach ; Chapter 10. Ecosystem service evaluation for landscape planning policies: addressing data availability issues ; Chapter 11. Section placeholder ; Chapter 12. Semantic spatial representation and collaborative mapping in urban and regional planning: the ontomap community project ; Chapter 13. Researching and enabling youth geographies in the digital and material city: the Teencarto project ; Chapter 14. A territorial dimension can be useful for managing long-term regional road safety ; Chapter 15. Defining urban planning strategy through social media application ; Chapter 16. A planning model for cognitive cities: spatial cognition through a participatory approach.

~РУБ DDC 307.1/2160285

Рубрики: Public spaces--Planning--Data processing.

   City planning--Data processing.


   Geographic information systems.


   Big data.


   SOCIAL SCIENCE / Sociology / Urban


Аннотация: "This book explores in a systematic way the themes of big data and the spatial analysis, with theoretical and operative recommendations for urban planning. It also brings together different work methodologies that combine the potential of large data analysis with GIS applications in dedicated tools specifically for sectoral, territorial, environmental, transport, energy, real estate and landscape assessment"--

Доп.точки доступа:
Voghera, Angioletta, \editor.\
La Riccia, Luigi, (1977-) \editor.\
IGI Global,

DDC 630.2085
S 68


    Smart agricultural services using deep learning, big data, and IoT / / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma. - Hershey, PA : : Engineering Science Reference, an imprint of IGI Global,, [2021]. - 1 online resource. - (Advances in environmental engineering and green technologies (AEEGT) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/FAB88504-AE18-4A42-98A4-540E4ED27C05. - ISBN 1799850048 (electronic book). - ISBN 9781799850045 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 25, 2020).
Параллельные издания: Print version: : Smart agricultural services using deep learning, big data, and IoT. - Hershey, PA : Engineering Science Reference, an imprint of IGI Global, [2021]. - ISBN 9781799850038
    Содержание:
Chapter 1. A neural network-based approach for pest detection and control in modern agriculture using Internet of things -- Chapter 2. Automated fruit grading system using image fusion -- Chapter 3. Fog computing as solution for IoT-based agricultural applications -- Chapter 4. Green cloud -- Chapter 5. Internet of things: a conceptual visualisation -- Chapter 6. Internet of things and the role of wireless sensor networks in IoT -- Chapter 7. IoT-based agri-safety model: mechanised agricultural fencing -- Chapter 8. Plant diseases concept in smart agriculture using deep learning -- Chapter 9. Smart agriculture and farming services using IoT -- Chapter 10. Smart agriculture services using deep learning, big data, and IoT (Internet of things) -- Chapter 11. An analysis of big data analytics -- Chapter 12. Towards intelligent agriculture using smart IoT sensors.

~РУБ DDC 630.2085

Рубрики: Agricultural informatics.

   Artificial intelligence--Agricultural applications.


   Internet of things.


   Machine learning.


   Big data.


   Agricultural informatics.


   Artificial intelligence--Agricultural applications.


   Big data.


   Internet of things.


   Machine learning.


Аннотация: "This book explores the application of deep learning, big data, IoT in agricultural services"--

Доп.точки доступа:
Gupta, Amit Kumar, (1981-) \editor.\

Smart agricultural services using deep learning, big data, and IoT / [Электронный ресурс] / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma., [2021]. - 1 online resource. с. (Введено оглавление)

5.

Smart agricultural services using deep learning, big data, and IoT / [Электронный ресурс] / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma., [2021]. - 1 online resource. с. (Введено оглавление)


DDC 630.2085
S 68


    Smart agricultural services using deep learning, big data, and IoT / / Amit Kumar Gupta, Dinesh Goyal, Vijendra Singh, Harish Sharma. - Hershey, PA : : Engineering Science Reference, an imprint of IGI Global,, [2021]. - 1 online resource. - (Advances in environmental engineering and green technologies (AEEGT) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/FAB88504-AE18-4A42-98A4-540E4ED27C05. - ISBN 1799850048 (electronic book). - ISBN 9781799850045 (electronic bk.)
Description based on online resource; title from digital title page (viewed on November 25, 2020).
Параллельные издания: Print version: : Smart agricultural services using deep learning, big data, and IoT. - Hershey, PA : Engineering Science Reference, an imprint of IGI Global, [2021]. - ISBN 9781799850038
    Содержание:
Chapter 1. A neural network-based approach for pest detection and control in modern agriculture using Internet of things -- Chapter 2. Automated fruit grading system using image fusion -- Chapter 3. Fog computing as solution for IoT-based agricultural applications -- Chapter 4. Green cloud -- Chapter 5. Internet of things: a conceptual visualisation -- Chapter 6. Internet of things and the role of wireless sensor networks in IoT -- Chapter 7. IoT-based agri-safety model: mechanised agricultural fencing -- Chapter 8. Plant diseases concept in smart agriculture using deep learning -- Chapter 9. Smart agriculture and farming services using IoT -- Chapter 10. Smart agriculture services using deep learning, big data, and IoT (Internet of things) -- Chapter 11. An analysis of big data analytics -- Chapter 12. Towards intelligent agriculture using smart IoT sensors.

~РУБ DDC 630.2085

Рубрики: Agricultural informatics.

   Artificial intelligence--Agricultural applications.


   Internet of things.


   Machine learning.


   Big data.


   Agricultural informatics.


   Artificial intelligence--Agricultural applications.


   Big data.


   Internet of things.


   Machine learning.


Аннотация: "This book explores the application of deep learning, big data, IoT in agricultural services"--

Доп.точки доступа:
Gupta, Amit Kumar, (1981-) \editor.\

DDC 530.8
P 36

Péceli, Gábor.
    Measurement and Data Science. / Gábor. Péceli. - Newcastle-upon-Tyne : : Cambridge Scholars Publisher,, 2021. - 1 online resource (375 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/04EFB6EF-1ED4-497C-B9F2-9DF22681E9EC. - ISBN 1527564266. - ISBN 9781527564268 (electronic bk.)
Description based upon print version of record.
Параллельные издания: Print version: : Péceli, Gábor Measurement and Data Science. - Newcastle-upon-Tyne : Cambridge Scholars Publisher,c2021. - ISBN 9781527560710

~РУБ DDC 530.8

Рубрики: Physical measurements.

   Big data.


   Data mining.


   Information technology: general issues.


   Engineering measurement & calibration.


   Automatic control engineering.


Аннотация: Nowadays, all of us enjoy the worldwide revival of measurement and data science caused by the revolution of sensory devices and the amazing data transmission, storage and processing capabilities available and embedded everywhere. Thanks to the unbelievable amount of recorded information and the theoretical results of measurement and data science, a great deal of newly developed products invade our surroundings and enable previously unconceivable smart services and support.This volume consists of a number of chapters covering the scientific results of researchers working in this field at the De.

Péceli, Gábor. Measurement and Data Science. [Электронный ресурс] / Gábor. Péceli, 2021. - 1 online resource (375 p.) с.

6.

Péceli, Gábor. Measurement and Data Science. [Электронный ресурс] / Gábor. Péceli, 2021. - 1 online resource (375 p.) с.


DDC 530.8
P 36

Péceli, Gábor.
    Measurement and Data Science. / Gábor. Péceli. - Newcastle-upon-Tyne : : Cambridge Scholars Publisher,, 2021. - 1 online resource (375 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/04EFB6EF-1ED4-497C-B9F2-9DF22681E9EC. - ISBN 1527564266. - ISBN 9781527564268 (electronic bk.)
Description based upon print version of record.
Параллельные издания: Print version: : Péceli, Gábor Measurement and Data Science. - Newcastle-upon-Tyne : Cambridge Scholars Publisher,c2021. - ISBN 9781527560710

~РУБ DDC 530.8

Рубрики: Physical measurements.

   Big data.


   Data mining.


   Information technology: general issues.


   Engineering measurement & calibration.


   Automatic control engineering.


Аннотация: Nowadays, all of us enjoy the worldwide revival of measurement and data science caused by the revolution of sensory devices and the amazing data transmission, storage and processing capabilities available and embedded everywhere. Thanks to the unbelievable amount of recorded information and the theoretical results of measurement and data science, a great deal of newly developed products invade our surroundings and enable previously unconceivable smart services and support.This volume consists of a number of chapters covering the scientific results of researchers working in this field at the De.

DDC 621.39/81
I 56


    Implementing data analytics and architectures for next generation wireless communications / / Chintan Bhatt, Neeraj Kumar, Ali Kashif Bashir, Mamoun Alazab. - Hershey, PA : : Information Science Reference, an imprint of IGI Global,, [2022]. - 1 online resource (xiii, 227 pages) : : il. - (Advances in wireless technologies and telecommunication (AWTT) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/45878870-E5F2-42DC-8010-361F6C9C1BB1. - ISBN 1799869911 (electronic book). - ISBN 9781799869900 (electronic book). - ISBN 1799869903 (electronic book). - ISBN 9781799869917 (electronic bk.)
"Premier Reference Source" -- taken from front cover. Description based on online resource; title from digital title page (viewed on October 12, 2021).
Параллельные издания: Print version: : Implementing data analytics and architectures for next generation wireless communications. - Hershey, PA : Information Science Reference (an imprint of IGI Global), [2021]. - ISBN 9781799869887
    Содержание:
Implementing data analytics and architectures for next generation wireless communications / Chintan Bhatt, Charotar University of Science and Technology, India, Neeraj Kumar, Thapar University, India, Ali Kashif Bashir, Manchester Metropolitan University, United Kingdom, Mamoun Alazab, Charles Darwin University, Australia -- Evaluation of turbo decoder performance through software reference model / Manjunatha N, Jain (Deemed-To-Be-University), India, Raghu N, Jain (Deemed-To-Be-University), India, Kiran B, Jain (Deemed-to-be University), India -- Role of Zigbee protocol in smart home appliances / Sirineni Lakshmi, Aurora's Degree & PG College, Dr. Viswanadham Bulusu, Aurora's Degree & PG College, India, Hari Prasada Rao Javangula, Aurora's Degree & PG College, India.

~РУБ DDC 621.39/81

Рубрики: Computer network architectures.

   Big data.


   Wireless communication systems.


   Internet of things.


   Artificial intelligence.


   Réseaux d'ordinateurs--Architectures.


   Données volumineuses.


   Transmission sans fil.


   Internet des objets.


   Intelligence artificielle.


   artificial intelligence.


   Artificial intelligence.


   Big data.


   Computer network architectures.


   Internet of things.


   Wireless communication systems.


Аннотация: "This book covers the existing and emerging theoretical and practical challenges in the design, development and implementation of big data algorithms, protocols, architectures, and applications for next-generation wireless communications and their applications in smart cities"--

Доп.точки доступа:
Bhatt, Chintan M., (1988-) \editor.\
Kumar, Neeraj ((Computer scientist),) \editor.\
Bashir, Ali Kashif, (1982-) \editor.\
Alazab, Mamoun, (1980-) \editor.\

Implementing data analytics and architectures for next generation wireless communications / [Электронный ресурс] / Chintan Bhatt, Neeraj Kumar, Ali Kashif Bashir, Mamoun Alazab., [2022]. - 1 online resource (xiii, 227 pages) : с. (Введено оглавление)

7.

Implementing data analytics and architectures for next generation wireless communications / [Электронный ресурс] / Chintan Bhatt, Neeraj Kumar, Ali Kashif Bashir, Mamoun Alazab., [2022]. - 1 online resource (xiii, 227 pages) : с. (Введено оглавление)


DDC 621.39/81
I 56


    Implementing data analytics and architectures for next generation wireless communications / / Chintan Bhatt, Neeraj Kumar, Ali Kashif Bashir, Mamoun Alazab. - Hershey, PA : : Information Science Reference, an imprint of IGI Global,, [2022]. - 1 online resource (xiii, 227 pages) : : il. - (Advances in wireless technologies and telecommunication (AWTT) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/45878870-E5F2-42DC-8010-361F6C9C1BB1. - ISBN 1799869911 (electronic book). - ISBN 9781799869900 (electronic book). - ISBN 1799869903 (electronic book). - ISBN 9781799869917 (electronic bk.)
"Premier Reference Source" -- taken from front cover. Description based on online resource; title from digital title page (viewed on October 12, 2021).
Параллельные издания: Print version: : Implementing data analytics and architectures for next generation wireless communications. - Hershey, PA : Information Science Reference (an imprint of IGI Global), [2021]. - ISBN 9781799869887
    Содержание:
Implementing data analytics and architectures for next generation wireless communications / Chintan Bhatt, Charotar University of Science and Technology, India, Neeraj Kumar, Thapar University, India, Ali Kashif Bashir, Manchester Metropolitan University, United Kingdom, Mamoun Alazab, Charles Darwin University, Australia -- Evaluation of turbo decoder performance through software reference model / Manjunatha N, Jain (Deemed-To-Be-University), India, Raghu N, Jain (Deemed-To-Be-University), India, Kiran B, Jain (Deemed-to-be University), India -- Role of Zigbee protocol in smart home appliances / Sirineni Lakshmi, Aurora's Degree & PG College, Dr. Viswanadham Bulusu, Aurora's Degree & PG College, India, Hari Prasada Rao Javangula, Aurora's Degree & PG College, India.

~РУБ DDC 621.39/81

Рубрики: Computer network architectures.

   Big data.


   Wireless communication systems.


   Internet of things.


   Artificial intelligence.


   Réseaux d'ordinateurs--Architectures.


   Données volumineuses.


   Transmission sans fil.


   Internet des objets.


   Intelligence artificielle.


   artificial intelligence.


   Artificial intelligence.


   Big data.


   Computer network architectures.


   Internet of things.


   Wireless communication systems.


Аннотация: "This book covers the existing and emerging theoretical and practical challenges in the design, development and implementation of big data algorithms, protocols, architectures, and applications for next-generation wireless communications and their applications in smart cities"--

Доп.точки доступа:
Bhatt, Chintan M., (1988-) \editor.\
Kumar, Neeraj ((Computer scientist),) \editor.\
Bashir, Ali Kashif, (1982-) \editor.\
Alazab, Mamoun, (1980-) \editor.\

DDC 616.8/0475
E 11


    Early detection of neurological disorders using machine learning systems / / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors. - Hershey, PA : : Medical Information Science Reference,, ©2019. - 1 online resource : : il. - (Advances in medical technologies and clinical practice book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/41AA37F5-CB4C-46F3-8B1D-D885B2FB8422. - ISBN 9781522585688 (electronic bk.). - ISBN 1522585680 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Early detection of neurological disorders using machine learning systems. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781522585671
    Содержание:
Epileptic seizure detection and classification using machine learning -- Rekh Janghel, Yogesh Rathore, Gautam Tiparti -- A study on basal ganglia circuit and its relation with movement disorders / Ankita Tiwari, Raghuvendra Tripathi, Dinesh Bhatia -- Social media analytics to predict depression level in the users / Mohammad Shahid Husain -- Tremor identification using machine learning in Parkinson's disease -- Angana Saikia, Vinayak Majhi, Masaraf Hussain, Sudip Paul, Amitava Datta -- Soft computing based early detection of Parkinson's disease using non-invasive method based on speech analysis / Chandrasekar Ravi -- Neurofeedback -retrain the brain / Meena Gupta, Dinesh Bhatia -- Neurocognitive mechanisms for detecting early phase of depressive disorder analysis of event related potentials in human brain / Shashikanta Tarai -- Intelligent big data analytics in health : big data analytics in health / Ebru Bayrak, Pinar Kirci -- Motor imagery classification using EEG signals for brain computer interface applications / Subrota Mazumdar, Rohit Chaudharya, Suruchi Suruchi, Suman Mohanty, Divya Kumari, Aleena Swetapadma -- Mapping the intellectual structure of the field neurological disorders : a bibliometric analysis / S. Ravikmar -- Medical image segmentation an advanced approach / Ramgopal Kashyapdia.

~РУБ DDC 616.8/0475

Рубрики: Nervous system--Diseases--Diagnosis.

   Machine learning.


   Diagnosis--Data processing.


   Nervous System Diseases--diagnosis.


   Machine Learning.


   Diagnosis, Computer-Assisted.


   Big Data.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book examines the role of machine learning systems in the detection of neurological disorders such as Alzheimer disease, Parkinson's disease, schizophrenia, and depression"--Provided by publisher.

Доп.точки доступа:
Paul, Sudip, (1984-) \editor.\
Bhattacharya, Pallab, (1978-) \editor.\
Bit, Arindam, (1985-) \editor.\

Early detection of neurological disorders using machine learning systems / [Электронный ресурс] / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors., ©2019. - 1 online resource : с. (Введено оглавление)

8.

Early detection of neurological disorders using machine learning systems / [Электронный ресурс] / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors., ©2019. - 1 online resource : с. (Введено оглавление)


DDC 616.8/0475
E 11


    Early detection of neurological disorders using machine learning systems / / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors. - Hershey, PA : : Medical Information Science Reference,, ©2019. - 1 online resource : : il. - (Advances in medical technologies and clinical practice book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/41AA37F5-CB4C-46F3-8B1D-D885B2FB8422. - ISBN 9781522585688 (electronic bk.). - ISBN 1522585680 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Early detection of neurological disorders using machine learning systems. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781522585671
    Содержание:
Epileptic seizure detection and classification using machine learning -- Rekh Janghel, Yogesh Rathore, Gautam Tiparti -- A study on basal ganglia circuit and its relation with movement disorders / Ankita Tiwari, Raghuvendra Tripathi, Dinesh Bhatia -- Social media analytics to predict depression level in the users / Mohammad Shahid Husain -- Tremor identification using machine learning in Parkinson's disease -- Angana Saikia, Vinayak Majhi, Masaraf Hussain, Sudip Paul, Amitava Datta -- Soft computing based early detection of Parkinson's disease using non-invasive method based on speech analysis / Chandrasekar Ravi -- Neurofeedback -retrain the brain / Meena Gupta, Dinesh Bhatia -- Neurocognitive mechanisms for detecting early phase of depressive disorder analysis of event related potentials in human brain / Shashikanta Tarai -- Intelligent big data analytics in health : big data analytics in health / Ebru Bayrak, Pinar Kirci -- Motor imagery classification using EEG signals for brain computer interface applications / Subrota Mazumdar, Rohit Chaudharya, Suruchi Suruchi, Suman Mohanty, Divya Kumari, Aleena Swetapadma -- Mapping the intellectual structure of the field neurological disorders : a bibliometric analysis / S. Ravikmar -- Medical image segmentation an advanced approach / Ramgopal Kashyapdia.

~РУБ DDC 616.8/0475

Рубрики: Nervous system--Diseases--Diagnosis.

   Machine learning.


   Diagnosis--Data processing.


   Nervous System Diseases--diagnosis.


   Machine Learning.


   Diagnosis, Computer-Assisted.


   Big Data.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book examines the role of machine learning systems in the detection of neurological disorders such as Alzheimer disease, Parkinson's disease, schizophrenia, and depression"--Provided by publisher.

Доп.точки доступа:
Paul, Sudip, (1984-) \editor.\
Bhattacharya, Pallab, (1978-) \editor.\
Bit, Arindam, (1985-) \editor.\

DDC 616.99/40072
L 96

Lu, Zhongyu, (1955-).
    Machine learning in cancer research with applications in colon cancer and big data analysis / / Zhongyu Joan Lu and Qiang Xu, Murad Al-Rajab, Lamogha Chiazor. - 4018/978-1-7998-7316-7. - Hershey, PA : : IGI Global, Medical Information Science Reference,, [2021]. - 1 online resource (ix, 263 pages) : : il ( час. мин.), 4018/978-1-7998-7316-7. - (Advances in medical technologies and clinical practice (AMTCP) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/41AC11BD-CBB1-411A-AB8B-092BF4B4550A. - ISBN 179987317X (electronic book). - ISBN 9781799873174 (electronic bk.)
"Premier reference source"--Cover. Description based on online resource; title from digital title page (viewed on May 10, 2021).
Параллельные издания: Print version: : Lu, Zhongyu, 1955- Machine learning in cancer research with applications in colon cancer and big data analysis. - Hershey, PA : Medical Information Science Reference, [2021]. - ISBN 9781799873167
    Содержание:
Chapter 1. Importance of information working with colon cancer research -- Chapter 2. An overview on bioinformatics -- Chapter 3. Research approach with machine learning underpinned -- Chapter 4. Design and procedures for the investigation conducted -- Chapter 5. Findings for the conducted investigations -- Chapter 6. Analysis, discussion, and evaluations for the case studies -- Chapter 7. Final remarks for the research with advanced machine learning methods in colon cancer analysis -- Chapter 8. Importance of research into big data with machine learning approach -- Chapter 9. Overview of big data with machine learning approach -- Chapter 10. Methodology for the research conducted -- Chapter 11. Hybrid-automl system development -- Chapter 12. Research output for the hybrid-automl system -- Chapter 13. Final remarks and further work for the hybrid-automl system.

~РУБ DDC 616.99/40072

Рубрики: Cancer--Research.

   Colon (Anatomy)--Cancer--Research.


   Cancer--Diagnosis.


   Bioinformatics.


   Big data.


   Problem solving--Data processing.


   Big data.


   Bioinformatics.


   Cancer--Diagnosis.


   Cancer--Research.


   Colon (Anatomy)--Cancer--Research.


   Problem solving--Data processing.


Аннотация: "This book presents a general picture for the latest research output and the state of the art technology in the bioinformatics in cancer research, and big data, machine learning theory and technologies in the various applications"--

Доп.точки доступа:
Xu, Qiang, (1963-) \author.\
Al-Rajab, Murad, (1983-) \author.\
Chiazor, Lamogha, (1989-) \author.\

Lu, Zhongyu,. Machine learning in cancer research with applications in colon cancer and big data analysis / [Электронный ресурс] / Zhongyu Joan Lu and Qiang Xu, Murad Al-Rajab, Lamogha Chiazor., [2021]. - 1 online resource (ix, 263 pages) : с. (Введено оглавление)

9.

Lu, Zhongyu,. Machine learning in cancer research with applications in colon cancer and big data analysis / [Электронный ресурс] / Zhongyu Joan Lu and Qiang Xu, Murad Al-Rajab, Lamogha Chiazor., [2021]. - 1 online resource (ix, 263 pages) : с. (Введено оглавление)


DDC 616.99/40072
L 96

Lu, Zhongyu, (1955-).
    Machine learning in cancer research with applications in colon cancer and big data analysis / / Zhongyu Joan Lu and Qiang Xu, Murad Al-Rajab, Lamogha Chiazor. - 4018/978-1-7998-7316-7. - Hershey, PA : : IGI Global, Medical Information Science Reference,, [2021]. - 1 online resource (ix, 263 pages) : : il ( час. мин.), 4018/978-1-7998-7316-7. - (Advances in medical technologies and clinical practice (AMTCP) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/41AC11BD-CBB1-411A-AB8B-092BF4B4550A. - ISBN 179987317X (electronic book). - ISBN 9781799873174 (electronic bk.)
"Premier reference source"--Cover. Description based on online resource; title from digital title page (viewed on May 10, 2021).
Параллельные издания: Print version: : Lu, Zhongyu, 1955- Machine learning in cancer research with applications in colon cancer and big data analysis. - Hershey, PA : Medical Information Science Reference, [2021]. - ISBN 9781799873167
    Содержание:
Chapter 1. Importance of information working with colon cancer research -- Chapter 2. An overview on bioinformatics -- Chapter 3. Research approach with machine learning underpinned -- Chapter 4. Design and procedures for the investigation conducted -- Chapter 5. Findings for the conducted investigations -- Chapter 6. Analysis, discussion, and evaluations for the case studies -- Chapter 7. Final remarks for the research with advanced machine learning methods in colon cancer analysis -- Chapter 8. Importance of research into big data with machine learning approach -- Chapter 9. Overview of big data with machine learning approach -- Chapter 10. Methodology for the research conducted -- Chapter 11. Hybrid-automl system development -- Chapter 12. Research output for the hybrid-automl system -- Chapter 13. Final remarks and further work for the hybrid-automl system.

~РУБ DDC 616.99/40072

Рубрики: Cancer--Research.

   Colon (Anatomy)--Cancer--Research.


   Cancer--Diagnosis.


   Bioinformatics.


   Big data.


   Problem solving--Data processing.


   Big data.


   Bioinformatics.


   Cancer--Diagnosis.


   Cancer--Research.


   Colon (Anatomy)--Cancer--Research.


   Problem solving--Data processing.


Аннотация: "This book presents a general picture for the latest research output and the state of the art technology in the bioinformatics in cancer research, and big data, machine learning theory and technologies in the various applications"--

Доп.точки доступа:
Xu, Qiang, (1963-) \author.\
Al-Rajab, Murad, (1983-) \author.\
Chiazor, Lamogha, (1989-) \author.\

DDC 610.285
H 22


    Handbook of research on essential information approaches to aiding global health in the one health context / / Jorge Lima de Magalhães, Zulmira Hartz, George Leal Jamil, Henrique Silveira, C. Liliane Jamil. - 4018/978-1-7998-8011-0. - Hershey, PA : : Medical Information Science Reference, an imprint of IGI Global,, [2022]. - 1 online resource : : il ( час. мин.), 4018/978-1-7998-8011-0. - (Advances in data mining and database management (ADMDM) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/6AFA227D-7282-4379-B683-22E9B54E3B4C. - ISBN 9781799880127 (electronic book). - ISBN 1799880125 (electronic book)
Description based on online resource; title from digital title page (viewed on January 21, 2022).
Параллельные издания: Print version: : Handbook of research on information management and One Health. - Hershey, PA : Medical Information Science Reference, [2022]. - ISBN 9781799880110
    Содержание:
Knowledge-Based Healthcare System in the Cloud Computing Environment -- Knowledge Management in Big Data times for Global Health : Challenges for Quality in One Health -- Modelling Business in Healthcare : Challenges on emerging technologies adoption for innovative solutions -- Syndemic and One Health nature of pandemics -- implications for intelligence management Systems : Syndemic and One Health nature of pandemics -- Innovations for an Integrated Approach to 2030 Agenda -- Patent Landscape, One Health and Sustainable Development Goals -- Anvisa's prior consent as a contribution to Global Health and the One Health system an analysis based on the Kingdon multiple streams model : Global Health and the One Health system -- Productive Development Partnership as a strengthening of the South-South relationship -- Challenges and opportunities in the study of innovation ecosystems in the COVID-19 pandemic context : The role of open science in vaccine development -- Big Data at the service of Public Health Systems : Success cases in Brazilian public management -- One Health and information management in Big Data in Health: a Brazilian case study for Covid19 -- Big Data at the service of the Public Health Systems : Success cases in Brazilian public management -- Coping infodemic with scientific knowledge management, the COVID-19 Scientific Evidence Observatory : A case study of COVID-19 Scientific Evidence Observatory -- Events, evolution, controversies in the implementation of health surveillance qualification program.

~РУБ DDC 610.285

Рубрики: Big data.

   Medical informatics.


   Information storage and retrieval systems--Medical care.


   Medicine--Information technology.


   Big Data


   Health Information Management


   One Health


   Medical Informatics


   Medical technology.


Аннотация: "This book studies the management of Big Data in Health information specifically for the new concept "One Health" and "Digital Health", concerning ailments that plague neglected populations and provides practical approaches by scientists and practitioners in the field that will assist in managing the knowledge of Big Data in information Health, to strengthen the skills and training of decision-making managers with tactical and strategic analysis, planning and decision making. This book project aims to"--

Доп.точки доступа:
Magalhães, Jorge Lima de, \editor.\
Hartz, Zulmira Maria de Araújo, \editor.\
Jamil, George Leal, (1959-) \editor.\
Silveira, Henrique, (1966-) \editor.\
Jamil, Liliane, (1988-) \editor.\

Handbook of research on essential information approaches to aiding global health in the one health context / [Электронный ресурс] / Jorge Lima de Magalhães, Zulmira Hartz, George Leal Jamil, Henrique Silveira, C. Liliane Jamil., [2022]. - 1 online resource : с. (Введено оглавление)

10.

Handbook of research on essential information approaches to aiding global health in the one health context / [Электронный ресурс] / Jorge Lima de Magalhães, Zulmira Hartz, George Leal Jamil, Henrique Silveira, C. Liliane Jamil., [2022]. - 1 online resource : с. (Введено оглавление)


DDC 610.285
H 22


    Handbook of research on essential information approaches to aiding global health in the one health context / / Jorge Lima de Magalhães, Zulmira Hartz, George Leal Jamil, Henrique Silveira, C. Liliane Jamil. - 4018/978-1-7998-8011-0. - Hershey, PA : : Medical Information Science Reference, an imprint of IGI Global,, [2022]. - 1 online resource : : il ( час. мин.), 4018/978-1-7998-8011-0. - (Advances in data mining and database management (ADMDM) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/6AFA227D-7282-4379-B683-22E9B54E3B4C. - ISBN 9781799880127 (electronic book). - ISBN 1799880125 (electronic book)
Description based on online resource; title from digital title page (viewed on January 21, 2022).
Параллельные издания: Print version: : Handbook of research on information management and One Health. - Hershey, PA : Medical Information Science Reference, [2022]. - ISBN 9781799880110
    Содержание:
Knowledge-Based Healthcare System in the Cloud Computing Environment -- Knowledge Management in Big Data times for Global Health : Challenges for Quality in One Health -- Modelling Business in Healthcare : Challenges on emerging technologies adoption for innovative solutions -- Syndemic and One Health nature of pandemics -- implications for intelligence management Systems : Syndemic and One Health nature of pandemics -- Innovations for an Integrated Approach to 2030 Agenda -- Patent Landscape, One Health and Sustainable Development Goals -- Anvisa's prior consent as a contribution to Global Health and the One Health system an analysis based on the Kingdon multiple streams model : Global Health and the One Health system -- Productive Development Partnership as a strengthening of the South-South relationship -- Challenges and opportunities in the study of innovation ecosystems in the COVID-19 pandemic context : The role of open science in vaccine development -- Big Data at the service of Public Health Systems : Success cases in Brazilian public management -- One Health and information management in Big Data in Health: a Brazilian case study for Covid19 -- Big Data at the service of the Public Health Systems : Success cases in Brazilian public management -- Coping infodemic with scientific knowledge management, the COVID-19 Scientific Evidence Observatory : A case study of COVID-19 Scientific Evidence Observatory -- Events, evolution, controversies in the implementation of health surveillance qualification program.

~РУБ DDC 610.285

Рубрики: Big data.

   Medical informatics.


   Information storage and retrieval systems--Medical care.


   Medicine--Information technology.


   Big Data


   Health Information Management


   One Health


   Medical Informatics


   Medical technology.


Аннотация: "This book studies the management of Big Data in Health information specifically for the new concept "One Health" and "Digital Health", concerning ailments that plague neglected populations and provides practical approaches by scientists and practitioners in the field that will assist in managing the knowledge of Big Data in information Health, to strengthen the skills and training of decision-making managers with tactical and strategic analysis, planning and decision making. This book project aims to"--

Доп.точки доступа:
Magalhães, Jorge Lima de, \editor.\
Hartz, Zulmira Maria de Araújo, \editor.\
Jamil, George Leal, (1959-) \editor.\
Silveira, Henrique, (1966-) \editor.\
Jamil, Liliane, (1988-) \editor.\

Страница 1, Результатов: 38

 

Все поступления за 
Или выберите интересующий месяц