Электронный каталог


 

База данных: Электронная библиотека

Страница 1, Результатов: 24

Отмеченные записи: 0

DDC 621.36/7028557
B 57


    Big data analytics for satellite image processing and remote sensing / / P. Swarnalatha and Prabu Sevugan, editors. - Hershey, PA : : Engineering Science Reference,, [2018]. - 1 online resource. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/27BCF3B2-59AB-4000-9D1E-E5D1120E15F9. - ISBN 9781522536444 (electronic bk.). - ISBN 1522536442 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Big data analytics for satellite image processing and remote sensing. - Hershey, PA : Engineering Science Reference, [2018]. - ISBN 9781522536437

~РУБ DDC 621.36/7028557

Рубрики: Geospatial data.

   Big data.


   Artificial satellites in remote sensing.


   Image processing--Digital techniques.


   Artificial satellites--Optical observations--Data processing.


   TECHNOLOGY & ENGINEERING / Mechanical


Аннотация: "This book explores the difficulties and challenges that various fields have faced in implementing the technologies and applications. It addresses different aspects of using big data upon image processing for remote sensing and related topics and it explores the impact of such technologies on the applications in which this advanced technology is being implemented"--

Доп.точки доступа:
Swarnalatha, P., (Purushotham), (1977-) \editor.\
Sevugan, Prabu, (1981-) \editor.\

Big data analytics for satellite image processing and remote sensing / [Электронный ресурс] / P. Swarnalatha and Prabu Sevugan, editors., [2018]. - 1 online resource. с.

1.

Big data analytics for satellite image processing and remote sensing / [Электронный ресурс] / P. Swarnalatha and Prabu Sevugan, editors., [2018]. - 1 online resource. с.


DDC 621.36/7028557
B 57


    Big data analytics for satellite image processing and remote sensing / / P. Swarnalatha and Prabu Sevugan, editors. - Hershey, PA : : Engineering Science Reference,, [2018]. - 1 online resource. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/27BCF3B2-59AB-4000-9D1E-E5D1120E15F9. - ISBN 9781522536444 (electronic bk.). - ISBN 1522536442 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Big data analytics for satellite image processing and remote sensing. - Hershey, PA : Engineering Science Reference, [2018]. - ISBN 9781522536437

~РУБ DDC 621.36/7028557

Рубрики: Geospatial data.

   Big data.


   Artificial satellites in remote sensing.


   Image processing--Digital techniques.


   Artificial satellites--Optical observations--Data processing.


   TECHNOLOGY & ENGINEERING / Mechanical


Аннотация: "This book explores the difficulties and challenges that various fields have faced in implementing the technologies and applications. It addresses different aspects of using big data upon image processing for remote sensing and related topics and it explores the impact of such technologies on the applications in which this advanced technology is being implemented"--

Доп.точки доступа:
Swarnalatha, P., (Purushotham), (1977-) \editor.\
Sevugan, Prabu, (1981-) \editor.\

DDC 610.72/4
S 88

Strasser, Bruno J. ,
    Collecting experiments : : making big data biology / / Bruno J. Strasser. - Chicago : : The University of Chicago Press,, 2019. - 1 online resource (pages). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DAB14D2F-4760-4FBB-B301-F258F0000031. - ISBN 9780226635187 (electronic bk.). - ISBN 022663518X (electronic bk.)
Print version record.
Параллельные издания: Print version: : Strasser, Bruno J. Collecting experiments. - Chicago : The University of Chicago Press, 2019. - ISBN 9780226634999
    Содержание:
Introduction -- Biology, computers, data -- Biology transformed -- Naturalists vs. experimentalists? -- The laboratory and experimentalism -- The museum and natural history -- Live museums -- Blood banks -- Data atlases -- Virtual collections -- Public databases -- Open science -- Conclusion. The end of model organisms? ; The new politics of knowledge.

~РУБ DDC 610.72/4

Рубрики: Biology, Experimental--Data processing.

   Biology, Experimental--Databases.


   Biological models--Data processing.


   Biological specimens--Collection and preservation--Technological innovations.


   Big data.


   Big data.


   Biological models--Data processing.


   Biology, Experimental--Data processing.


   HEALTH & FITNESS / Holism


   HEALTH & FITNESS / Reference


   MEDICAL / Alternative Medicine


   MEDICAL / Atlases


   MEDICAL / Essays


   MEDICAL / Family & General Practice


   MEDICAL / Holistic Medicine


   MEDICAL / Osteopathy


Strasser, Bruno J., Collecting experiments : [Электронный ресурс] : making big data biology / / Bruno J. Strasser., 2019. - 1 online resource (pages) с. (Введено оглавление)

2.

Strasser, Bruno J., Collecting experiments : [Электронный ресурс] : making big data biology / / Bruno J. Strasser., 2019. - 1 online resource (pages) с. (Введено оглавление)


DDC 610.72/4
S 88

Strasser, Bruno J. ,
    Collecting experiments : : making big data biology / / Bruno J. Strasser. - Chicago : : The University of Chicago Press,, 2019. - 1 online resource (pages). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DAB14D2F-4760-4FBB-B301-F258F0000031. - ISBN 9780226635187 (electronic bk.). - ISBN 022663518X (electronic bk.)
Print version record.
Параллельные издания: Print version: : Strasser, Bruno J. Collecting experiments. - Chicago : The University of Chicago Press, 2019. - ISBN 9780226634999
    Содержание:
Introduction -- Biology, computers, data -- Biology transformed -- Naturalists vs. experimentalists? -- The laboratory and experimentalism -- The museum and natural history -- Live museums -- Blood banks -- Data atlases -- Virtual collections -- Public databases -- Open science -- Conclusion. The end of model organisms? ; The new politics of knowledge.

~РУБ DDC 610.72/4

Рубрики: Biology, Experimental--Data processing.

   Biology, Experimental--Databases.


   Biological models--Data processing.


   Biological specimens--Collection and preservation--Technological innovations.


   Big data.


   Big data.


   Biological models--Data processing.


   Biology, Experimental--Data processing.


   HEALTH & FITNESS / Holism


   HEALTH & FITNESS / Reference


   MEDICAL / Alternative Medicine


   MEDICAL / Atlases


   MEDICAL / Essays


   MEDICAL / Family & General Practice


   MEDICAL / Holistic Medicine


   MEDICAL / Osteopathy


DDC 363.12/5
M 84

Moridpour, Sara, (1980-).
    Big data analytics in traffic and transportation engineering : : emerging research and opportunities / / by Sara Moridpour. - Hershey, PA : : Engineering Science Reference,, ©2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/572FAF6F-1498-4FC2-915F-995E7ABFA664. - ISBN 9781522579441 (electronic bk.). - ISBN 1522579443 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Moridpour, Sara, 1980- Big data analytics in traffic and transportation engineering. - Hershey, PA : Engineering Science Reference, [2019]. - ISBN 9781522579434
    Содержание:
Access to public transport in metropolitan areas -- Bikeability in metropolitan areas -- Walkability in metropolitan areas -- Applying decision tree approaches on vehicle-pedestrian crashes -- Neighbourhood influences on vehicle-pedestrian crash severity -- Spatial and temporal distribution of pedestrian crashes -- Contributing factors on vehicle-pedestrian crash severity of school-aged pedestrians.

~РУБ DDC 363.12/5

Рубрики: Pedestrian accidents--Statistical methods.--Australia--Melbourne (Vic.)

   Traffic accidents--Statistical methods.--Australia--Melbourne (Vic.)


   Roads--Interchanges and intersections--Safety measures--Statistical methods.


   Big data--Australia--Melbourne (Vic.)


   Big data.


   Traffic accidents--Statistical methods.


   BUSINESS & ECONOMICS / Infrastructure


   SOCIAL SCIENCE / General


   Victoria--Melbourne.
Аннотация: "This book identifies the factors contributing to the severity of vehicle-pedestrian crashes at mid-blocks. It examines the influence of the socioeconomic factors of the neighborhoods where road users live (residency neighborhood) and where crashes occur (crash neighborhood) on vehicle-pedestrian crash severity, while controlling for the influences of roadway, road user, vehicle and environmental factors"--Provided by publisher.

Moridpour, Sara,. Big data analytics in traffic and transportation engineering : [Электронный ресурс] : emerging research and opportunities / / by Sara Moridpour., ©2019. - 1 online resource. с. (Введено оглавление)

3.

Moridpour, Sara,. Big data analytics in traffic and transportation engineering : [Электронный ресурс] : emerging research and opportunities / / by Sara Moridpour., ©2019. - 1 online resource. с. (Введено оглавление)


DDC 363.12/5
M 84

Moridpour, Sara, (1980-).
    Big data analytics in traffic and transportation engineering : : emerging research and opportunities / / by Sara Moridpour. - Hershey, PA : : Engineering Science Reference,, ©2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/572FAF6F-1498-4FC2-915F-995E7ABFA664. - ISBN 9781522579441 (electronic bk.). - ISBN 1522579443 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Moridpour, Sara, 1980- Big data analytics in traffic and transportation engineering. - Hershey, PA : Engineering Science Reference, [2019]. - ISBN 9781522579434
    Содержание:
Access to public transport in metropolitan areas -- Bikeability in metropolitan areas -- Walkability in metropolitan areas -- Applying decision tree approaches on vehicle-pedestrian crashes -- Neighbourhood influences on vehicle-pedestrian crash severity -- Spatial and temporal distribution of pedestrian crashes -- Contributing factors on vehicle-pedestrian crash severity of school-aged pedestrians.

~РУБ DDC 363.12/5

Рубрики: Pedestrian accidents--Statistical methods.--Australia--Melbourne (Vic.)

   Traffic accidents--Statistical methods.--Australia--Melbourne (Vic.)


   Roads--Interchanges and intersections--Safety measures--Statistical methods.


   Big data--Australia--Melbourne (Vic.)


   Big data.


   Traffic accidents--Statistical methods.


   BUSINESS & ECONOMICS / Infrastructure


   SOCIAL SCIENCE / General


   Victoria--Melbourne.
Аннотация: "This book identifies the factors contributing to the severity of vehicle-pedestrian crashes at mid-blocks. It examines the influence of the socioeconomic factors of the neighborhoods where road users live (residency neighborhood) and where crashes occur (crash neighborhood) on vehicle-pedestrian crash severity, while controlling for the influences of roadway, road user, vehicle and environmental factors"--Provided by publisher.

DDC 307.1/2160285
S 78


    Spatial planning in the big data revolution / / Angioletta Voghera and Luigi La Riccia, editors. - 4018/978-1-5225-7927-4. - Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : : IGI Global,, [2019]. - 1 online resource (27 PDFs (359 pages)) ( час. мин.), 4018/978-1-5225-7927-4. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/7055E4B8-9481-413F-8D03-26D1AFD28A88. - ISBN 1522579281. - ISBN 9781522579281 (electronic bk.)
Description based on title screen (IGI Global, viewed 02/23/2019).
Параллельные издания: Print version: :
    Содержание:
Chapter 1. Section placeholder ; Chapter 2. Towards knowledge-based spatial planning ; Chapter 3. Modelling and assessing spatial big data: use cases of the openstreetmap full-history dump ; Chapter 4. Big data and high-performance analyses and processes ; Chapter 5. IoT platforms and technologies driving spatial planning and analytics ; Chapter 6. The walkability of the cities: improving it through the reuse of available data and raster analyses ; Chapter 7. Section placeholder ; Chapter 8. Defining energy criteria in the absence of open data: a stakeholder-oriented approach based on multi-criteria analysis (MCA) ; Chapter 9. Can big data support smart(er) evaluation?: theoretical consideration starting from the territorial integrated evaluation approach ; Chapter 10. Ecosystem service evaluation for landscape planning policies: addressing data availability issues ; Chapter 11. Section placeholder ; Chapter 12. Semantic spatial representation and collaborative mapping in urban and regional planning: the ontomap community project ; Chapter 13. Researching and enabling youth geographies in the digital and material city: the Teencarto project ; Chapter 14. A territorial dimension can be useful for managing long-term regional road safety ; Chapter 15. Defining urban planning strategy through social media application ; Chapter 16. A planning model for cognitive cities: spatial cognition through a participatory approach.

~РУБ DDC 307.1/2160285

Рубрики: Public spaces--Planning--Data processing.

   City planning--Data processing.


   Geographic information systems.


   Big data.


   SOCIAL SCIENCE / Sociology / Urban


Аннотация: "This book explores in a systematic way the themes of big data and the spatial analysis, with theoretical and operative recommendations for urban planning. It also brings together different work methodologies that combine the potential of large data analysis with GIS applications in dedicated tools specifically for sectoral, territorial, environmental, transport, energy, real estate and landscape assessment"--

Доп.точки доступа:
Voghera, Angioletta, \editor.\
La Riccia, Luigi, (1977-) \editor.\
IGI Global,

Spatial planning in the big data revolution / [Электронный ресурс] / Angioletta Voghera and Luigi La Riccia, editors., [2019]. - 1 online resource (27 PDFs (359 pages)) с. (Введено оглавление)

4.

Spatial planning in the big data revolution / [Электронный ресурс] / Angioletta Voghera and Luigi La Riccia, editors., [2019]. - 1 online resource (27 PDFs (359 pages)) с. (Введено оглавление)


DDC 307.1/2160285
S 78


    Spatial planning in the big data revolution / / Angioletta Voghera and Luigi La Riccia, editors. - 4018/978-1-5225-7927-4. - Hershey, Pennsylvania (701 E. Chocolate Avenue, Hershey, Pennsylvania, 17033, USA) : : IGI Global,, [2019]. - 1 online resource (27 PDFs (359 pages)) ( час. мин.), 4018/978-1-5225-7927-4. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/7055E4B8-9481-413F-8D03-26D1AFD28A88. - ISBN 1522579281. - ISBN 9781522579281 (electronic bk.)
Description based on title screen (IGI Global, viewed 02/23/2019).
Параллельные издания: Print version: :
    Содержание:
Chapter 1. Section placeholder ; Chapter 2. Towards knowledge-based spatial planning ; Chapter 3. Modelling and assessing spatial big data: use cases of the openstreetmap full-history dump ; Chapter 4. Big data and high-performance analyses and processes ; Chapter 5. IoT platforms and technologies driving spatial planning and analytics ; Chapter 6. The walkability of the cities: improving it through the reuse of available data and raster analyses ; Chapter 7. Section placeholder ; Chapter 8. Defining energy criteria in the absence of open data: a stakeholder-oriented approach based on multi-criteria analysis (MCA) ; Chapter 9. Can big data support smart(er) evaluation?: theoretical consideration starting from the territorial integrated evaluation approach ; Chapter 10. Ecosystem service evaluation for landscape planning policies: addressing data availability issues ; Chapter 11. Section placeholder ; Chapter 12. Semantic spatial representation and collaborative mapping in urban and regional planning: the ontomap community project ; Chapter 13. Researching and enabling youth geographies in the digital and material city: the Teencarto project ; Chapter 14. A territorial dimension can be useful for managing long-term regional road safety ; Chapter 15. Defining urban planning strategy through social media application ; Chapter 16. A planning model for cognitive cities: spatial cognition through a participatory approach.

~РУБ DDC 307.1/2160285

Рубрики: Public spaces--Planning--Data processing.

   City planning--Data processing.


   Geographic information systems.


   Big data.


   SOCIAL SCIENCE / Sociology / Urban


Аннотация: "This book explores in a systematic way the themes of big data and the spatial analysis, with theoretical and operative recommendations for urban planning. It also brings together different work methodologies that combine the potential of large data analysis with GIS applications in dedicated tools specifically for sectoral, territorial, environmental, transport, energy, real estate and landscape assessment"--

Доп.точки доступа:
Voghera, Angioletta, \editor.\
La Riccia, Luigi, (1977-) \editor.\
IGI Global,

DDC 616.8/0475
E 11


    Early detection of neurological disorders using machine learning systems / / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors. - Hershey, PA : : Medical Information Science Reference,, ©2019. - 1 online resource : : il. - (Advances in medical technologies and clinical practice book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/4FBD56BA-9995-46DF-B872-B20D6B52B82F. - ISBN 9781522585688 (electronic bk.). - ISBN 1522585680 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Early detection of neurological disorders using machine learning systems. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781522585671
    Содержание:
Epileptic seizure detection and classification using machine learning -- Rekh Janghel, Yogesh Rathore, Gautam Tiparti -- A study on basal ganglia circuit and its relation with movement disorders / Ankita Tiwari, Raghuvendra Tripathi, Dinesh Bhatia -- Social media analytics to predict depression level in the users / Mohammad Shahid Husain -- Tremor identification using machine learning in Parkinson's disease -- Angana Saikia, Vinayak Majhi, Masaraf Hussain, Sudip Paul, Amitava Datta -- Soft computing based early detection of Parkinson's disease using non-invasive method based on speech analysis / Chandrasekar Ravi -- Neurofeedback -retrain the brain / Meena Gupta, Dinesh Bhatia -- Neurocognitive mechanisms for detecting early phase of depressive disorder analysis of event related potentials in human brain / Shashikanta Tarai -- Intelligent big data analytics in health : big data analytics in health / Ebru Bayrak, Pinar Kirci -- Motor imagery classification using EEG signals for brain computer interface applications / Subrota Mazumdar, Rohit Chaudharya, Suruchi Suruchi, Suman Mohanty, Divya Kumari, Aleena Swetapadma -- Mapping the intellectual structure of the field neurological disorders : a bibliometric analysis / S. Ravikmar -- Medical image segmentation an advanced approach / Ramgopal Kashyapdia.

~РУБ DDC 616.8/0475

Рубрики: Nervous system--Diseases--Diagnosis.

   Machine learning.


   Diagnosis--Data processing.


   Nervous System Diseases--diagnosis.


   Machine Learning.


   Diagnosis, Computer-Assisted.


   Big Data.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book examines the role of machine learning systems in the detection of neurological disorders such as Alzheimer disease, Parkinson's disease, schizophrenia, and depression"--Provided by publisher.

Доп.точки доступа:
Paul, Sudip, (1984-) \editor.\
Bhattacharya, Pallab, (1978-) \editor.\
Bit, Arindam, (1985-) \editor.\

Early detection of neurological disorders using machine learning systems / [Электронный ресурс] / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors., ©2019. - 1 online resource : с. (Введено оглавление)

5.

Early detection of neurological disorders using machine learning systems / [Электронный ресурс] / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors., ©2019. - 1 online resource : с. (Введено оглавление)


DDC 616.8/0475
E 11


    Early detection of neurological disorders using machine learning systems / / Sudip Paul, Pallab Bhattacharya, and Arindam Bit, editors. - Hershey, PA : : Medical Information Science Reference,, ©2019. - 1 online resource : : il. - (Advances in medical technologies and clinical practice book series). - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/4FBD56BA-9995-46DF-B872-B20D6B52B82F. - ISBN 9781522585688 (electronic bk.). - ISBN 1522585680 (electronic bk.)
Print version record.
Параллельные издания: Print version: : Early detection of neurological disorders using machine learning systems. - Hershey, PA : Medical Information Science Reference, [2020]. - ISBN 9781522585671
    Содержание:
Epileptic seizure detection and classification using machine learning -- Rekh Janghel, Yogesh Rathore, Gautam Tiparti -- A study on basal ganglia circuit and its relation with movement disorders / Ankita Tiwari, Raghuvendra Tripathi, Dinesh Bhatia -- Social media analytics to predict depression level in the users / Mohammad Shahid Husain -- Tremor identification using machine learning in Parkinson's disease -- Angana Saikia, Vinayak Majhi, Masaraf Hussain, Sudip Paul, Amitava Datta -- Soft computing based early detection of Parkinson's disease using non-invasive method based on speech analysis / Chandrasekar Ravi -- Neurofeedback -retrain the brain / Meena Gupta, Dinesh Bhatia -- Neurocognitive mechanisms for detecting early phase of depressive disorder analysis of event related potentials in human brain / Shashikanta Tarai -- Intelligent big data analytics in health : big data analytics in health / Ebru Bayrak, Pinar Kirci -- Motor imagery classification using EEG signals for brain computer interface applications / Subrota Mazumdar, Rohit Chaudharya, Suruchi Suruchi, Suman Mohanty, Divya Kumari, Aleena Swetapadma -- Mapping the intellectual structure of the field neurological disorders : a bibliometric analysis / S. Ravikmar -- Medical image segmentation an advanced approach / Ramgopal Kashyapdia.

~РУБ DDC 616.8/0475

Рубрики: Nervous system--Diseases--Diagnosis.

   Machine learning.


   Diagnosis--Data processing.


   Nervous System Diseases--diagnosis.


   Machine Learning.


   Diagnosis, Computer-Assisted.


   Big Data.


   HEALTH & FITNESS / Diseases / General


   MEDICAL / Clinical Medicine


   MEDICAL / Diseases


   MEDICAL / Evidence-Based Medicine


   MEDICAL / Internal Medicine


Аннотация: "This book examines the role of machine learning systems in the detection of neurological disorders such as Alzheimer disease, Parkinson's disease, schizophrenia, and depression"--Provided by publisher.

Доп.точки доступа:
Paul, Sudip, (1984-) \editor.\
Bhattacharya, Pallab, (1978-) \editor.\
Bit, Arindam, (1985-) \editor.\

DDC 610.285
D 24


    Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications [[electronic resource].]. - [Б. м.] : Medical Information Science Reference, 2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DE5D1726-6AD3-4856-8A70-5A80686B4AF2. - ISBN 1799812065. - ISBN 9781799812067 (electronic bk.)

~РУБ DDC 610.285

Рубрики: Medical informatics.

   Medicine--Data processing.


   Big data.


   Data mining.


Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications [[electronic resource].], 2019. - 1 online resource с.

6.

Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications [[electronic resource].], 2019. - 1 online resource с.


DDC 610.285
D 24


    Data Analytics in Medicine: Concepts, Methodologies, Tools, and Applications [[electronic resource].]. - [Б. м.] : Medical Information Science Reference, 2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DE5D1726-6AD3-4856-8A70-5A80686B4AF2. - ISBN 1799812065. - ISBN 9781799812067 (electronic bk.)

~РУБ DDC 610.285

Рубрики: Medical informatics.

   Medicine--Data processing.


   Big data.


   Data mining.


DDC 005.7
M 30

Marin, Ivan.
    Big data analysis with Python : : combine Spark and Python to unlock the powers of parallel computing and machine learning / / Ivan Marin, Ankit Shukla and Sarang VK. - Birmingham, UK : : Packt Publishing,, ©2019. - 1 online resource (276 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C3233AC3-74EA-4C2D-A64D-76AE7AE62C11. - ISBN 1789950732 (electronic book). - ISBN 9781789950731 (electronic book)
Description based on online resource; title from digital title page (viewed on January 06, 2020).
Параллельные издания: Print version: : Marin, Ivan. Big Data Analysis with Python : Combine Spark and Python to Unlock the Powers of Parallel Computing and Machine Learning. - Birmingham : Packt Publishing Ltd, ©2019. - ISBN 9781789955286
    Содержание:
Chapter 1: The Python Data Science Stack -- Chapter 2: Statistical Visualizations -- Chapter 3: Working with Big Data Frameworks -- Chapter 4: Diving Deeper with Spark -- Chapter 5: Handling Missing Values and Correlation Analysis -- Chapter 6: Exploratory Data Analysis -- Chapter 7: Reproducibility in Big Data Analysis -- Chapter 8: Creating a Full Analysis Report

~РУБ DDC 005.7

Рубрики: Big data.

   Python (Computer program language)


   Cloud computing.


   Machine learning.


   Big data.


   Cloud computing.


   Machine learning.


   Python (Computer program language)


Аннотация: Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control the data avalanche for you. With this book, you'll learn effective techniques to aggregate data into useful dimensions for posterior analysis, extract ...

Доп.точки доступа:
Shukla, Ankit.
VK, Sarang.

Marin, Ivan. Big data analysis with Python : [Электронный ресурс] : combine Spark and Python to unlock the powers of parallel computing and machine learning / / Ivan Marin, Ankit Shukla and Sarang VK., ©2019. - 1 online resource (276 pages) с. (Введено оглавление)

7.

Marin, Ivan. Big data analysis with Python : [Электронный ресурс] : combine Spark and Python to unlock the powers of parallel computing and machine learning / / Ivan Marin, Ankit Shukla and Sarang VK., ©2019. - 1 online resource (276 pages) с. (Введено оглавление)


DDC 005.7
M 30

Marin, Ivan.
    Big data analysis with Python : : combine Spark and Python to unlock the powers of parallel computing and machine learning / / Ivan Marin, Ankit Shukla and Sarang VK. - Birmingham, UK : : Packt Publishing,, ©2019. - 1 online resource (276 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C3233AC3-74EA-4C2D-A64D-76AE7AE62C11. - ISBN 1789950732 (electronic book). - ISBN 9781789950731 (electronic book)
Description based on online resource; title from digital title page (viewed on January 06, 2020).
Параллельные издания: Print version: : Marin, Ivan. Big Data Analysis with Python : Combine Spark and Python to Unlock the Powers of Parallel Computing and Machine Learning. - Birmingham : Packt Publishing Ltd, ©2019. - ISBN 9781789955286
    Содержание:
Chapter 1: The Python Data Science Stack -- Chapter 2: Statistical Visualizations -- Chapter 3: Working with Big Data Frameworks -- Chapter 4: Diving Deeper with Spark -- Chapter 5: Handling Missing Values and Correlation Analysis -- Chapter 6: Exploratory Data Analysis -- Chapter 7: Reproducibility in Big Data Analysis -- Chapter 8: Creating a Full Analysis Report

~РУБ DDC 005.7

Рубрики: Big data.

   Python (Computer program language)


   Cloud computing.


   Machine learning.


   Big data.


   Cloud computing.


   Machine learning.


   Python (Computer program language)


Аннотация: Processing big data in real time is challenging due to scalability, information inconsistency, and fault tolerance. Big Data Analysis with Python teaches you how to use tools that can control the data avalanche for you. With this book, you'll learn effective techniques to aggregate data into useful dimensions for posterior analysis, extract ...

Доп.точки доступа:
Shukla, Ankit.
VK, Sarang.

DDC 005.8
S 43


    Security, privacy, and forensics issues in big data / / [edited by] Ramesh C. Joshi, Brij B. Gupta. - 4018/978-1-5225-9742-1. - Hershey, Pennsylvania : : IGI Global,, [2020]. - 1 online resource. ( час. мин.), 4018/978-1-5225-9742-1. - (Advances in Information Security, Privacy, and Ethics (AISPE) Book Series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/A950C774-1418-44B4-A065-AC99B7006896. - ISBN 1522597441 (electronic book). - ISBN 9781522597445 (electronic bk.)
Description based on online resource; title from digital title page (viewed on December 02, 2019).
Параллельные издания: Print version: :
    Содержание:
Chapter 1. Securing the cloud for big data -- Chapter 2. Big data: challenges and solutions -- Chapter 3. Human factors in cybersecurity: issues and challenges in big data -- Chapter 4. Security and privacy challenges in big data -- Chapter 5. Cloud-centric blockchain public key infrastructure for big data applications -- Chapter 6. Security vulnerabilities, threats, and attacks in IoT and big data: challenges and solutions -- Chapter 7. Threat hunting in windows using big security log data -- Chapter 8. Nature-inspired techniques for data security in big data -- Chapter 9. Bootstrapping urban planning: addressing big data issues in smart cities -- Chapter 10. Securing online bank's big data through block chain technology: cross-border transactions security and tracking -- Chapter 11. Enhance data security and privacy in cloud -- Chapter 12. The unheard story of organizational motivations towards user privacy -- Chapter 13. Botnet and Internet of things (IoTs): a definition, taxonomy, challenges, and future directions -- Chapter 14. A conceptual model for the organizational adoption of information system security innovations -- Chapter 15. Theoretical foundations of deep resonance interference network: towards intuitive learning as a wave field phenomenon -- Chapter 16. Malware threat in internet of things and its mitigation analysis -- Chapter 17. Leveraging fog computing and deep learning for building a secure individual health-based decision support system to evade air pollution.

~РУБ DDC 005.8

Рубрики: Big data.

   Cyber intelligence (Computer security)


   Privacy, Right of.


   Digital forensic science.


   Big data.


   Cyber intelligence (Computer security)


   Digital forensic science.


   Privacy, Right of.


Аннотация: "This book focuses on the security, privacy, and forensics of big data. It also examines the principles, algorithms, challenges and applications related to the security, privacy, and forensics of big data"--

Доп.точки доступа:
Joshi, R. C., \editor.\
Gupta, Brij, (1982-) \editor.\
IGI Global,

Security, privacy, and forensics issues in big data / [Электронный ресурс] / [edited by] Ramesh C. Joshi, Brij B. Gupta., [2020]. - 1 online resource. с. (Введено оглавление)

8.

Security, privacy, and forensics issues in big data / [Электронный ресурс] / [edited by] Ramesh C. Joshi, Brij B. Gupta., [2020]. - 1 online resource. с. (Введено оглавление)


DDC 005.8
S 43


    Security, privacy, and forensics issues in big data / / [edited by] Ramesh C. Joshi, Brij B. Gupta. - 4018/978-1-5225-9742-1. - Hershey, Pennsylvania : : IGI Global,, [2020]. - 1 online resource. ( час. мин.), 4018/978-1-5225-9742-1. - (Advances in Information Security, Privacy, and Ethics (AISPE) Book Series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/A950C774-1418-44B4-A065-AC99B7006896. - ISBN 1522597441 (electronic book). - ISBN 9781522597445 (electronic bk.)
Description based on online resource; title from digital title page (viewed on December 02, 2019).
Параллельные издания: Print version: :
    Содержание:
Chapter 1. Securing the cloud for big data -- Chapter 2. Big data: challenges and solutions -- Chapter 3. Human factors in cybersecurity: issues and challenges in big data -- Chapter 4. Security and privacy challenges in big data -- Chapter 5. Cloud-centric blockchain public key infrastructure for big data applications -- Chapter 6. Security vulnerabilities, threats, and attacks in IoT and big data: challenges and solutions -- Chapter 7. Threat hunting in windows using big security log data -- Chapter 8. Nature-inspired techniques for data security in big data -- Chapter 9. Bootstrapping urban planning: addressing big data issues in smart cities -- Chapter 10. Securing online bank's big data through block chain technology: cross-border transactions security and tracking -- Chapter 11. Enhance data security and privacy in cloud -- Chapter 12. The unheard story of organizational motivations towards user privacy -- Chapter 13. Botnet and Internet of things (IoTs): a definition, taxonomy, challenges, and future directions -- Chapter 14. A conceptual model for the organizational adoption of information system security innovations -- Chapter 15. Theoretical foundations of deep resonance interference network: towards intuitive learning as a wave field phenomenon -- Chapter 16. Malware threat in internet of things and its mitigation analysis -- Chapter 17. Leveraging fog computing and deep learning for building a secure individual health-based decision support system to evade air pollution.

~РУБ DDC 005.8

Рубрики: Big data.

   Cyber intelligence (Computer security)


   Privacy, Right of.


   Digital forensic science.


   Big data.


   Cyber intelligence (Computer security)


   Digital forensic science.


   Privacy, Right of.


Аннотация: "This book focuses on the security, privacy, and forensics of big data. It also examines the principles, algorithms, challenges and applications related to the security, privacy, and forensics of big data"--

Доп.точки доступа:
Joshi, R. C., \editor.\
Gupta, Brij, (1982-) \editor.\
IGI Global,

DDC 006.3/1
D 30


    Deep learning innovations and their convergence with big data / / S. Karthik, SNS College of Technology, Anna University, India ; Anand Paul, Kyungpook National University, South Korea ; N. Karthikeyan, Mizan-Tepi University, Ethiopia. - Hershey, PA : : IGI Global,, ©2018. - 1 online resource (xxii, 265 pages) : : il. - (Advances in data mining and database management (ADMDM) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/CD458B4B-C6A8-43E8-82DB-9736615F5807. - ISBN 9781522530169 (electronic bk.). - ISBN 1522530169 (electronic bk.)
"Premier reference source"--Cover. Description based on print version record.
Параллельные издания: Print version: : Deep learning innovations and their convergence with big data. - Hershey, PA : Information Science Reference, [2018]. - ISBN 9781522530152
    Содержание:
Advanced threat detection based on big data technologies / Madhvaraj M. Shetty, Manjaiah D.H. -- A brief review on deep learning and types of implementation for deep learning / Uthra Kunathur Thikshaja, Anand Paul -- Big spectrum data and deep learning techniques for cognitive wireless networks / Punam Dutta Choudhury, Ankumoni Bora, Kandarpa Kumar Sarma -- Efficiently processing big data in real-time employing deep learning algorithm / Murad Khan, Bhagya Nathali Silva, Kijun Han -- Digital investigation of cybercrimes based on big data analytics using deep learning / Ezz El-Din Hemdan, Manjaiah D. H. -- Classifying images of drought-affected area using deep belief network, kNN, and random forest learning techniques / Sanjiban Sekhar Roy, Pulkit Kulshrestha, Pijush Samui -- Big data deep analytics for geosocial networks / Muhammad Mazhar Ullah Rathore, Awais Ahmad, Anand Paul -- Data science: recent developments and future insights / Sabitha Rajagopal -- Data science and computational biology / Singaraju Jyothi, Bhargavi P-- After cloud: in hypothetical world / Shigeki Sugiyama -- Cloud-based big data analytics in smart educational system / Newlin Rajkumar Manokaran, Venkatesa Kumar Varathan, Shalinie Deepak.

~РУБ DDC 006.3/1

Рубрики: Machine learning--Technological innovations.

   Big data.


   COMPUTERS / General


Аннотация: "This book capture the state of the art trends and advancements in big data analytics, its technologies, and applications. The book also aims to identify potential research directions and technologies that will facilitate insight generation in various domains of science, industry, business, and consumer applications"--

Доп.точки доступа:
Karthik, S., (1977-) \editor.\
Paul, Anand, \editor.\
Karthikeyan, N., (1977-) \editor.\

Deep learning innovations and their convergence with big data / [Электронный ресурс] / S. Karthik, SNS College of Technology, Anna University, India ; Anand Paul, Kyungpook National University, South Korea ; N. Karthikeyan, Mizan-Tepi University, Ethiopia., ©2018. - 1 online resource (xxii, 265 pages) : с. (Введено оглавление)

9.

Deep learning innovations and their convergence with big data / [Электронный ресурс] / S. Karthik, SNS College of Technology, Anna University, India ; Anand Paul, Kyungpook National University, South Korea ; N. Karthikeyan, Mizan-Tepi University, Ethiopia., ©2018. - 1 online resource (xxii, 265 pages) : с. (Введено оглавление)


DDC 006.3/1
D 30


    Deep learning innovations and their convergence with big data / / S. Karthik, SNS College of Technology, Anna University, India ; Anand Paul, Kyungpook National University, South Korea ; N. Karthikeyan, Mizan-Tepi University, Ethiopia. - Hershey, PA : : IGI Global,, ©2018. - 1 online resource (xxii, 265 pages) : : il. - (Advances in data mining and database management (ADMDM) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/CD458B4B-C6A8-43E8-82DB-9736615F5807. - ISBN 9781522530169 (electronic bk.). - ISBN 1522530169 (electronic bk.)
"Premier reference source"--Cover. Description based on print version record.
Параллельные издания: Print version: : Deep learning innovations and their convergence with big data. - Hershey, PA : Information Science Reference, [2018]. - ISBN 9781522530152
    Содержание:
Advanced threat detection based on big data technologies / Madhvaraj M. Shetty, Manjaiah D.H. -- A brief review on deep learning and types of implementation for deep learning / Uthra Kunathur Thikshaja, Anand Paul -- Big spectrum data and deep learning techniques for cognitive wireless networks / Punam Dutta Choudhury, Ankumoni Bora, Kandarpa Kumar Sarma -- Efficiently processing big data in real-time employing deep learning algorithm / Murad Khan, Bhagya Nathali Silva, Kijun Han -- Digital investigation of cybercrimes based on big data analytics using deep learning / Ezz El-Din Hemdan, Manjaiah D. H. -- Classifying images of drought-affected area using deep belief network, kNN, and random forest learning techniques / Sanjiban Sekhar Roy, Pulkit Kulshrestha, Pijush Samui -- Big data deep analytics for geosocial networks / Muhammad Mazhar Ullah Rathore, Awais Ahmad, Anand Paul -- Data science: recent developments and future insights / Sabitha Rajagopal -- Data science and computational biology / Singaraju Jyothi, Bhargavi P-- After cloud: in hypothetical world / Shigeki Sugiyama -- Cloud-based big data analytics in smart educational system / Newlin Rajkumar Manokaran, Venkatesa Kumar Varathan, Shalinie Deepak.

~РУБ DDC 006.3/1

Рубрики: Machine learning--Technological innovations.

   Big data.


   COMPUTERS / General


Аннотация: "This book capture the state of the art trends and advancements in big data analytics, its technologies, and applications. The book also aims to identify potential research directions and technologies that will facilitate insight generation in various domains of science, industry, business, and consumer applications"--

Доп.точки доступа:
Karthik, S., (1977-) \editor.\
Paul, Anand, \editor.\
Karthikeyan, N., (1977-) \editor.\

DDC 005.7
M 78


    Modern technologies for big data classification and clustering / / Hari Seetha, Vellore Institute of Technology-Andhra Pradesh, India ; M. Narasimha Murty, Indian Institute of Science, India ; B. K. Tripathy, VIT University, India. - Hershey, PA : : IGI Global,, ©2018. - 1 online resource (xxi, 360 pages) : : il. - (Advances in data mining and database management (ADMDM) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/383A8125-3F23-41B5-9C60-C61262DE4593. - ISBN 9781522528067 (electronic bk.). - ISBN 1522528067 (electronic bk.)
Description based on print version record
Параллельные издания: Print version: : Modern technologies for big data classification and clustering. - Hershey, PA : Information Science Reference, [2018]. - ISBN 9781522528050
    Содержание:
Uncertainty-based clustering algorithms for large data sets / B. K. Tripathy, Hari Seetha, M. N. Murty -- Sentiment mining approaches for big data classification and clustering / Ashok Kumar J, Abirami S, Tina Esther Trueman -- Data compaction techniques / R. Raj Kumar, P. Viswanath, C. Shoba Bindu -- Methodologies and technologies to retrieve information from text sources / Anu Singha, Phub Namgay -- Twitter data analysis / Chitrakala S -- Use of social network analysis in telecommunication domain / Sushruta Mishra, Hrudaya Kumar Tripathy, Monalisa Mishra, Bijayalaxmi Panda -- A review on spatial big data analytics and visualization / Bangaru Kamatchi Seethapathy, Parvathi R -- A survey on overlapping communities in large-scale social networks / S Rao Chintalapudi, H. M. Krishna Prasad -- A brief study of approaches to text feature selection / Ravindra Babu Tallamaraju, Manas Kirti -- Biological big data analysis and visualization: a survey / Vignesh U, Parvathi R

~РУБ DDC 005.7

Рубрики: Big data.

   Data mining.


   Cluster analysis.


   Classification--Nonbook materials.


   Document clustering.


   COMPUTERS--Databases--Data Mining.


   Big data.


   Classification--Nonbook materials.


   Cluster analysis.


   Data mining.


   Document clustering.


Аннотация: "This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithms and information about new technologies, algorithms and platforms developed for handling large data"--
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.

Доп.точки доступа:
Seetha, Hari, (1970-) \editor.\
Murty, M. Narasimha, \editor.\
Tripathy, B. K., (1957-) \editor.\

Modern technologies for big data classification and clustering / [Электронный ресурс] / Hari Seetha, Vellore Institute of Technology-Andhra Pradesh, India ; M. Narasimha Murty, Indian Institute of Science, India ; B. K. Tripathy, VIT University, India, ©2018. - 1 online resource (xxi, 360 pages) : с. (Введено оглавление)

10.

Modern technologies for big data classification and clustering / [Электронный ресурс] / Hari Seetha, Vellore Institute of Technology-Andhra Pradesh, India ; M. Narasimha Murty, Indian Institute of Science, India ; B. K. Tripathy, VIT University, India, ©2018. - 1 online resource (xxi, 360 pages) : с. (Введено оглавление)


DDC 005.7
M 78


    Modern technologies for big data classification and clustering / / Hari Seetha, Vellore Institute of Technology-Andhra Pradesh, India ; M. Narasimha Murty, Indian Institute of Science, India ; B. K. Tripathy, VIT University, India. - Hershey, PA : : IGI Global,, ©2018. - 1 online resource (xxi, 360 pages) : : il. - (Advances in data mining and database management (ADMDM) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/383A8125-3F23-41B5-9C60-C61262DE4593. - ISBN 9781522528067 (electronic bk.). - ISBN 1522528067 (electronic bk.)
Description based on print version record
Параллельные издания: Print version: : Modern technologies for big data classification and clustering. - Hershey, PA : Information Science Reference, [2018]. - ISBN 9781522528050
    Содержание:
Uncertainty-based clustering algorithms for large data sets / B. K. Tripathy, Hari Seetha, M. N. Murty -- Sentiment mining approaches for big data classification and clustering / Ashok Kumar J, Abirami S, Tina Esther Trueman -- Data compaction techniques / R. Raj Kumar, P. Viswanath, C. Shoba Bindu -- Methodologies and technologies to retrieve information from text sources / Anu Singha, Phub Namgay -- Twitter data analysis / Chitrakala S -- Use of social network analysis in telecommunication domain / Sushruta Mishra, Hrudaya Kumar Tripathy, Monalisa Mishra, Bijayalaxmi Panda -- A review on spatial big data analytics and visualization / Bangaru Kamatchi Seethapathy, Parvathi R -- A survey on overlapping communities in large-scale social networks / S Rao Chintalapudi, H. M. Krishna Prasad -- A brief study of approaches to text feature selection / Ravindra Babu Tallamaraju, Manas Kirti -- Biological big data analysis and visualization: a survey / Vignesh U, Parvathi R

~РУБ DDC 005.7

Рубрики: Big data.

   Data mining.


   Cluster analysis.


   Classification--Nonbook materials.


   Document clustering.


   COMPUTERS--Databases--Data Mining.


   Big data.


   Classification--Nonbook materials.


   Cluster analysis.


   Data mining.


   Document clustering.


Аннотация: "This book provides an analysis of large data in the field of classification and clustering by presenting algorithms and comparative analysis in the form of their effectiveness and efficiency. It covers topics such as handling large data with conventional data mining, machine learning algorithms and information about new technologies, algorithms and platforms developed for handling large data"--
Data has increased due to the growing use of web applications and communication devices. It is necessary to develop new techniques of managing data in order to ensure adequate usage. Modern Technologies for Big Data Classification and Clustering is an essential reference source for the latest scholarly research on handling large data sets with conventional data mining and provide information about the new technologies developed for the management of large data. Featuring coverage on a broad range of topics such as text and web data analytics, risk analysis, and opinion mining, this publication is ideally designed for professionals, researchers, and students seeking current research on various concepts of big data analytics.

Доп.точки доступа:
Seetha, Hari, (1970-) \editor.\
Murty, M. Narasimha, \editor.\
Tripathy, B. K., (1957-) \editor.\

Страница 1, Результатов: 24

 

Все поступления за 
Или выберите интересующий месяц