Электронный каталог


 

База данных: ЭБС EBSCO eBook

Страница 1, Результатов: 5

Отмеченные записи: 0

DDC 006.3/5
R 33

Reese, Richard Martin, (1953-).
    Natural language processing with Java : : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia. - Second edition. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - (Community experience distilled). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/208C26CA-E05E-4508-9CD4-84D44FC266D9. - ISBN 9781788993067 (electronic bk.). - ISBN 1788993063 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed August 27, 2018).

~РУБ DDC 006.3/5

Рубрики: Natural language processing (Computer science)

   Java (Computer program language)


   Machine learning.


   Neural networks (Computer science)


   COMPUTERS / General.



Доп.точки доступа:
Bhatia, AshishSingh, \author.\

Reese, Richard Martin,. Natural language processing with Java : [Электронный ресурс] : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia., 2018. - 1 online resource (1 volume) : с.

1.

Reese, Richard Martin,. Natural language processing with Java : [Электронный ресурс] : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia., 2018. - 1 online resource (1 volume) : с.


DDC 006.3/5
R 33

Reese, Richard Martin, (1953-).
    Natural language processing with Java : : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia. - Second edition. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - (Community experience distilled). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/208C26CA-E05E-4508-9CD4-84D44FC266D9. - ISBN 9781788993067 (electronic bk.). - ISBN 1788993063 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed August 27, 2018).

~РУБ DDC 006.3/5

Рубрики: Natural language processing (Computer science)

   Java (Computer program language)


   Machine learning.


   Neural networks (Computer science)


   COMPUTERS / General.



Доп.точки доступа:
Bhatia, AshishSingh, \author.\

DDC 006.3
P 32

Patel, Devangini.
    Hands-On Artificial Intelligence for Search [[electronic resource] :] : Building Intelligent Applications and Perform Enterprise Searches / / Devangini Patel. - Birmingham : : Packt Publishing Ltd,, 2018. - 1 online resource (120 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/ABCEFB67-26EB-4797-8980-A5C5FE771AAD. - ISBN 9781789612479 (electronic bk.). - ISBN 1789612470 (electronic bk.)
Description based upon print version of record.
Параллельные издания: Print version: : Patel, Devangini Hands-On Artificial Intelligence for Search : Building Intelligent Applications and Perform Enterprise Searches. - Birmingham : Packt Publishing Ltd,c2018. - ISBN 9781789611151
    Содержание:
Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Understanding the Depth-First Search Algorithm; Installing and setting up libraries; Setting up Python; Setting up Graphviz; Installing pip; Introduction to file searching applications; Basic search concepts; Formulating the search problem; Building trees with nodes; Stack data structure; The DFS algorithm; Recursive DFS; Do it yourself; Summary; Chapter 2: Understanding the Breadth-First Search Algorithm; Understanding the LinkedIn connection feature; Graph data structure
Queue data structureThe BFS algorithm; BFS versus DFS; Order of traversal; Data structures; Memory; Optimal solution; Do it yourself; Summary; Chapter 3: Understanding the Heuristic Search Algorithm; Revisiting the navigation application; The priority queue data structure; Visualizing a search tree; Greedy BFS; A* Search; What is a good heuristic function? ; Properties of a good heuristic function; Admissible; Consistent; Summary; Other Books You May Enjoy; Index

~РУБ DDC 006.3

Рубрики: Computers--Expert Systems.

   Computers--Web--Search Engines.


   Internet searching.


   Expert systems / knowledge-based systems.


   Computers--Computer Science.


   Computer science.


   Artificial intelligence.


   Application software--Development.


   Machine learning.


   Python (Computer program language)


   COMPUTERS / General.


Аннотация: In this book, you will understand what artificial intelligence is. It explains in detail basic search methods: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be used to make intelligent decisions when the initial state, end state, and possible actions are known. Random solutions or greedy solutions can be found ...

Patel, Devangini. Hands-On Artificial Intelligence for Search [[electronic resource] :] : Building Intelligent Applications and Perform Enterprise Searches / / Devangini Patel., 2018. - 1 online resource (120 p.) с. (Введено оглавление)

2.

Patel, Devangini. Hands-On Artificial Intelligence for Search [[electronic resource] :] : Building Intelligent Applications and Perform Enterprise Searches / / Devangini Patel., 2018. - 1 online resource (120 p.) с. (Введено оглавление)


DDC 006.3
P 32

Patel, Devangini.
    Hands-On Artificial Intelligence for Search [[electronic resource] :] : Building Intelligent Applications and Perform Enterprise Searches / / Devangini Patel. - Birmingham : : Packt Publishing Ltd,, 2018. - 1 online resource (120 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/ABCEFB67-26EB-4797-8980-A5C5FE771AAD. - ISBN 9781789612479 (electronic bk.). - ISBN 1789612470 (electronic bk.)
Description based upon print version of record.
Параллельные издания: Print version: : Patel, Devangini Hands-On Artificial Intelligence for Search : Building Intelligent Applications and Perform Enterprise Searches. - Birmingham : Packt Publishing Ltd,c2018. - ISBN 9781789611151
    Содержание:
Cover; Title Page; Copyright and Credits; Packt Upsell; Contributors; Table of Contents; Preface; Chapter 1: Understanding the Depth-First Search Algorithm; Installing and setting up libraries; Setting up Python; Setting up Graphviz; Installing pip; Introduction to file searching applications; Basic search concepts; Formulating the search problem; Building trees with nodes; Stack data structure; The DFS algorithm; Recursive DFS; Do it yourself; Summary; Chapter 2: Understanding the Breadth-First Search Algorithm; Understanding the LinkedIn connection feature; Graph data structure
Queue data structureThe BFS algorithm; BFS versus DFS; Order of traversal; Data structures; Memory; Optimal solution; Do it yourself; Summary; Chapter 3: Understanding the Heuristic Search Algorithm; Revisiting the navigation application; The priority queue data structure; Visualizing a search tree; Greedy BFS; A* Search; What is a good heuristic function? ; Properties of a good heuristic function; Admissible; Consistent; Summary; Other Books You May Enjoy; Index

~РУБ DDC 006.3

Рубрики: Computers--Expert Systems.

   Computers--Web--Search Engines.


   Internet searching.


   Expert systems / knowledge-based systems.


   Computers--Computer Science.


   Computer science.


   Artificial intelligence.


   Application software--Development.


   Machine learning.


   Python (Computer program language)


   COMPUTERS / General.


Аннотация: In this book, you will understand what artificial intelligence is. It explains in detail basic search methods: Depth-First Search (DFS), Breadth-First Search (BFS), and A* Search, which can be used to make intelligent decisions when the initial state, end state, and possible actions are known. Random solutions or greedy solutions can be found ...

DDC 006.2/2
E 45

Elk, Klaus,.
    Embedded software for the IoT / / Klaus Elk. - Third edition. - Boston : : Walter de Gruyter Inc.,, ©2019. - 1 online resource. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/EF5823A2-6435-4F3C-A534-5A11017D8DC1. - ISBN 9781547401024 (electronic bk.). - ISBN 1547401028 (electronic bk.). - ISBN 9781547401048 (electronic bk.). - ISBN 1547401044 (electronic bk.)
Online resource; title from PDF title page (EBSCO, viewed March 29, 2019)

~РУБ DDC 006.2/2

Рубрики: Embedded computer systems.

   Internet of things.


   COMPUTERS / General.


Elk, Klaus,. Embedded software for the IoT / [Электронный ресурс] / Klaus Elk., ©2019. - 1 online resource с.

3.

Elk, Klaus,. Embedded software for the IoT / [Электронный ресурс] / Klaus Elk., ©2019. - 1 online resource с.


DDC 006.2/2
E 45

Elk, Klaus,.
    Embedded software for the IoT / / Klaus Elk. - Third edition. - Boston : : Walter de Gruyter Inc.,, ©2019. - 1 online resource. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/EF5823A2-6435-4F3C-A534-5A11017D8DC1. - ISBN 9781547401024 (electronic bk.). - ISBN 1547401028 (electronic bk.). - ISBN 9781547401048 (electronic bk.). - ISBN 1547401044 (electronic bk.)
Online resource; title from PDF title page (EBSCO, viewed March 29, 2019)

~РУБ DDC 006.2/2

Рубрики: Embedded computer systems.

   Internet of things.


   COMPUTERS / General.


DDC 006.3/32
O-61


    Ontology makes sense [[electronic resource] :] : essays in honor of Nicola Guarino / / edited by Stefano Borgo, Roberta Ferrario, Claudio Masolo and Laure Vieu. - Amsterdam : : IOS Press,, 2019. - 1 online resource. - (Frontiers in artificial intelligence and applications ; ; v. 316). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/E55CB7E0-0FE5-4AB4-82C2-CDA70E0554A2. - ISBN 9781614999553 (electronic bk.). - ISBN 1614999554 (electronic bk.)
Includes index. Online resource; title from PDF title page (EBSCO, viewed May 21, 2019)

~РУБ DDC 006.3/32

Рубрики: Ontologies (Information retrieval)

   COMPUTERS / General.



Доп.точки доступа:
Borgo, Stefano.
Ferrario, Roberta.
Masolo, Claudio.
Vieu, Laure.

Ontology makes sense [[electronic resource] :] : essays in honor of Nicola Guarino / / edited by Stefano Borgo, Roberta Ferrario, Claudio Masolo and Laure Vieu., 2019. - 1 online resource с.

4.

Ontology makes sense [[electronic resource] :] : essays in honor of Nicola Guarino / / edited by Stefano Borgo, Roberta Ferrario, Claudio Masolo and Laure Vieu., 2019. - 1 online resource с.


DDC 006.3/32
O-61


    Ontology makes sense [[electronic resource] :] : essays in honor of Nicola Guarino / / edited by Stefano Borgo, Roberta Ferrario, Claudio Masolo and Laure Vieu. - Amsterdam : : IOS Press,, 2019. - 1 online resource. - (Frontiers in artificial intelligence and applications ; ; v. 316). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/E55CB7E0-0FE5-4AB4-82C2-CDA70E0554A2. - ISBN 9781614999553 (electronic bk.). - ISBN 1614999554 (electronic bk.)
Includes index. Online resource; title from PDF title page (EBSCO, viewed May 21, 2019)

~РУБ DDC 006.3/32

Рубрики: Ontologies (Information retrieval)

   COMPUTERS / General.



Доп.точки доступа:
Borgo, Stefano.
Ferrario, Roberta.
Masolo, Claudio.
Vieu, Laure.

DDC 006.31
M 55

Mengle, Saket S. R.,
    Mastering machine learning on AWS : : advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow / / Saket S.R. Mengle, Maximo Gurmendez. - Birmingham, UK : : Packt Publishing, Limited,, 2019. - 1 online resource (293 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/E64DB41C-5FE0-49C0-858F-11551992A3ED. - ISBN 1789347505 (ebook). - ISBN 9781789347500 (electronic bk.)
Description based on print version record.
Параллельные издания: Print version: : Mengle, Saket S. R. Mastering machine learning on AWS : advanced machine learning in Python Using SageMaker, Apache Spark, and TensorFlow. - Birmingham : Packt Publishing, Limited, ©2019. - ISBN 9781789349795
    Содержание:
Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Machine Learning on AWS; Chapter 1: Getting Started with Machine Learning for AWS; How AWS empowers data scientists; Using AWS tools for machine learning; Identifying candidate problems that can be solved using machine learning; Machine learning project life cycle; Data gathering; Evaluation metrics; Algorithm selection; Deploying models; Summary; Exercise; Section 2: Implementing Machine Learning Algorithms at Scale on AWS
Chapter 2: Classifying Twitter Feeds with Naive BayesClassification algorithms; Feature types; Nominal features; Ordinal features; Continuous features; Naive Bayes classifier; Bayes' theorem; Posterior; Likelihood; Prior probability; Evidence; How the Naive Bayes algorithm works; Classifying text with language models; Collecting the tweets; Preparing the data; Building a Naive Bayes model through SageMaker notebooks; Naïve Bayes model on SageMaker notebooks using Apache Spark; Using SageMaker's BlazingText built-in ML service; Naive Bayes - pros and cons; Summary; Exercises
Chapter 3: Predicting House Value with Regression AlgorithmsPredicting the price of houses; Understanding linear regression; Linear least squares estimation; Maximum likelihood estimation; Gradient descent; Evaluating regression models; Mean absolute error; Mean squared error; Root mean squared error; R-squared; Implementing linear regression through scikit-learn; Implementing linear regression through Apache Spark; Implementing linear regression through SageMaker's linear Learner; Understanding logistic regression; Logistic regression in Spark; Pros and cons of linear models; Summary
Chapter 4: Predicting User Behavior with Tree-Based MethodsUnderstanding decision trees; Recursive splitting; Types of decision trees; Cost functions; Gini Impurity; Information gain; Criteria to stop splitting trees; Understanding random forest algorithms; Understanding gradient boosting algorithms; Predicting clicks on log streams; Introduction to Elastic Map Reduce (EMR); Training with Apache Spark on EMR; Getting the data; Preparing the data; Categorical encoding; One-hot encoding; Training a model; Evaluating our model; Area Under ROC Curve; Area under the precision-recall curve; Training tree ensembles on EMR Training gradient-boosted trees with the SageMaker services; Preparing the data; Training with SageMaker XGBoost; Applying and evaluating the model; Summary; Exercises
Chapter 5: Customer Segmentation Using Clustering Algorithms; Understanding How Clustering Algorithms Work; k-means clustering; Euclidean distance; Manhattan distance; Hierarchical clustering; Agglomerative clustering; Divisive clustering; Clustering with Apache Spark on EMR; Clustering with Spark and SageMaker on EMR; Understanding the purpose of the IAM role; Summary; Exercises; Chapter 6: Analyzing Visitor Patterns to Make Recommendations

~РУБ DDC 006.31

Рубрики: Machine learning.

   Python (Computer program language)


   Data mining.


   COMPUTERS / General.


Аннотация: This book will help you master your skills in various artificial intelligence and machine learning services available on AWS. Through practical hands-on examples, you'll learn how to use these services to generate impressive results. You will have a tremendous understanding of how to use a wide range of AWS services in your own organization.

Доп.точки доступа:
Gurmendez, Maximo, \author.\

Mengle, Saket S. R., Mastering machine learning on AWS : [Электронный ресурс] : advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow / / Saket S.R. Mengle, Maximo Gurmendez., 2019. - 1 online resource (293 pages) с. (Введено оглавление)

5.

Mengle, Saket S. R., Mastering machine learning on AWS : [Электронный ресурс] : advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow / / Saket S.R. Mengle, Maximo Gurmendez., 2019. - 1 online resource (293 pages) с. (Введено оглавление)


DDC 006.31
M 55

Mengle, Saket S. R.,
    Mastering machine learning on AWS : : advanced machine learning in Python using SageMaker, Apache Spark, and TensorFlow / / Saket S.R. Mengle, Maximo Gurmendez. - Birmingham, UK : : Packt Publishing, Limited,, 2019. - 1 online resource (293 pages). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/E64DB41C-5FE0-49C0-858F-11551992A3ED. - ISBN 1789347505 (ebook). - ISBN 9781789347500 (electronic bk.)
Description based on print version record.
Параллельные издания: Print version: : Mengle, Saket S. R. Mastering machine learning on AWS : advanced machine learning in Python Using SageMaker, Apache Spark, and TensorFlow. - Birmingham : Packt Publishing, Limited, ©2019. - ISBN 9781789349795
    Содержание:
Cover; Title Page; Copyright and Credits; Dedication; About Packt; Contributors; Table of Contents; Preface; Section 1: Machine Learning on AWS; Chapter 1: Getting Started with Machine Learning for AWS; How AWS empowers data scientists; Using AWS tools for machine learning; Identifying candidate problems that can be solved using machine learning; Machine learning project life cycle; Data gathering; Evaluation metrics; Algorithm selection; Deploying models; Summary; Exercise; Section 2: Implementing Machine Learning Algorithms at Scale on AWS
Chapter 2: Classifying Twitter Feeds with Naive BayesClassification algorithms; Feature types; Nominal features; Ordinal features; Continuous features; Naive Bayes classifier; Bayes' theorem; Posterior; Likelihood; Prior probability; Evidence; How the Naive Bayes algorithm works; Classifying text with language models; Collecting the tweets; Preparing the data; Building a Naive Bayes model through SageMaker notebooks; Naïve Bayes model on SageMaker notebooks using Apache Spark; Using SageMaker's BlazingText built-in ML service; Naive Bayes - pros and cons; Summary; Exercises
Chapter 3: Predicting House Value with Regression AlgorithmsPredicting the price of houses; Understanding linear regression; Linear least squares estimation; Maximum likelihood estimation; Gradient descent; Evaluating regression models; Mean absolute error; Mean squared error; Root mean squared error; R-squared; Implementing linear regression through scikit-learn; Implementing linear regression through Apache Spark; Implementing linear regression through SageMaker's linear Learner; Understanding logistic regression; Logistic regression in Spark; Pros and cons of linear models; Summary
Chapter 4: Predicting User Behavior with Tree-Based MethodsUnderstanding decision trees; Recursive splitting; Types of decision trees; Cost functions; Gini Impurity; Information gain; Criteria to stop splitting trees; Understanding random forest algorithms; Understanding gradient boosting algorithms; Predicting clicks on log streams; Introduction to Elastic Map Reduce (EMR); Training with Apache Spark on EMR; Getting the data; Preparing the data; Categorical encoding; One-hot encoding; Training a model; Evaluating our model; Area Under ROC Curve; Area under the precision-recall curve; Training tree ensembles on EMR Training gradient-boosted trees with the SageMaker services; Preparing the data; Training with SageMaker XGBoost; Applying and evaluating the model; Summary; Exercises
Chapter 5: Customer Segmentation Using Clustering Algorithms; Understanding How Clustering Algorithms Work; k-means clustering; Euclidean distance; Manhattan distance; Hierarchical clustering; Agglomerative clustering; Divisive clustering; Clustering with Apache Spark on EMR; Clustering with Spark and SageMaker on EMR; Understanding the purpose of the IAM role; Summary; Exercises; Chapter 6: Analyzing Visitor Patterns to Make Recommendations

~РУБ DDC 006.31

Рубрики: Machine learning.

   Python (Computer program language)


   Data mining.


   COMPUTERS / General.


Аннотация: This book will help you master your skills in various artificial intelligence and machine learning services available on AWS. Through practical hands-on examples, you'll learn how to use these services to generate impressive results. You will have a tremendous understanding of how to use a wide range of AWS services in your own organization.

Доп.точки доступа:
Gurmendez, Maximo, \author.\

Страница 1, Результатов: 5

 

Все поступления за 
Или выберите интересующий месяц