База данных: ЭБС EBSCO eBook
Страница 1, Результатов: 14
Отмеченные записи: 0
1.
Подробнее
DDC 006.3/5
R 33
Reese, Richard Martin, (1953-).
Natural language processing with Java : : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia. - Second edition. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - (Community experience distilled). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/208C26CA-E05E-4508-9CD4-84D44FC266D9. - ISBN 9781788993067 (electronic bk.). - ISBN 1788993063 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed August 27, 2018).
~РУБ DDC 006.3/5
Рубрики: Natural language processing (Computer science)
Java (Computer program language)
Machine learning.
Neural networks (Computer science)
COMPUTERS / General.
Доп.точки доступа:
Bhatia, AshishSingh, \author.\
R 33
Reese, Richard Martin, (1953-).
Natural language processing with Java : : techniques for building machine learning and neural network models for NLP / / Richard M. Reese, AshishSingh Bhatia. - Second edition. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - (Community experience distilled). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/208C26CA-E05E-4508-9CD4-84D44FC266D9. - ISBN 9781788993067 (electronic bk.). - ISBN 1788993063 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed August 27, 2018).
Рубрики: Natural language processing (Computer science)
Java (Computer program language)
Machine learning.
Neural networks (Computer science)
COMPUTERS / General.
Доп.точки доступа:
Bhatia, AshishSingh, \author.\
2.
Подробнее
DDC 006.35
G 42
Ghosh, Sohom.
Natural Language Processing Fundamentals [[electronic resource] :] : Build Intelligent Applications That Can Interpret the Human Language to Deliver Impactful Results. / Sohom. Ghosh, Gunning, Dwight. - Birmingham : : Packt Publishing Ltd,, 2019. - 1 online resource (375 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/777E904C-09AF-4DC7-9EC4-175467B6DA0D. - ISBN 178995598X. - ISBN 9781789955989 (electronic bk.)
Description based upon print version of record.
Параллельные издания: Print version: : Ghosh, Sohom Natural Language Processing Fundamentals : Build Intelligent Applications That Can Interpret the Human Language to Deliver Impactful Results. - Birmingham : Packt Publishing Ltd,c2019. - ISBN 9781789954043
~РУБ DDC 006.35
Рубрики: Natural language processing (Computer science)
Computational linguistics.
Artificial intelligence.
COMPUTERS / General
Аннотация: Natural Language Processing Fundamentals starts with basics and goes on to explain various NLP tools and techniques that equip you with all that you need to solve common business problems for processing text.
Доп.точки доступа:
Gunning, Dwight.
G 42
Ghosh, Sohom.
Natural Language Processing Fundamentals [[electronic resource] :] : Build Intelligent Applications That Can Interpret the Human Language to Deliver Impactful Results. / Sohom. Ghosh, Gunning, Dwight. - Birmingham : : Packt Publishing Ltd,, 2019. - 1 online resource (375 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/777E904C-09AF-4DC7-9EC4-175467B6DA0D. - ISBN 178995598X. - ISBN 9781789955989 (electronic bk.)
Description based upon print version of record.
Параллельные издания: Print version: : Ghosh, Sohom Natural Language Processing Fundamentals : Build Intelligent Applications That Can Interpret the Human Language to Deliver Impactful Results. - Birmingham : Packt Publishing Ltd,c2019. - ISBN 9781789954043
Рубрики: Natural language processing (Computer science)
Computational linguistics.
Artificial intelligence.
COMPUTERS / General
Аннотация: Natural Language Processing Fundamentals starts with basics and goes on to explain various NLP tools and techniques that equip you with all that you need to solve common business problems for processing text.
Доп.точки доступа:
Gunning, Dwight.
3.
Подробнее
DDC 401/.41
P 86
Post-narratology through computational and cognitive approaches / / Takashi Ogata and Taisuke Akimoto, editors. - Hershey, PA : : Information Science Reference,, 2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/24D66BB5-8018-4152-89E4-7D206BDA3525. - ISBN 9781522579809 (electronic bk.). - ISBN 152257980X (electronic bk.)
Print version record.
Параллельные издания: Print version: : Post-narratology through computational and cognitive approaches. - Hershey, PA : Information Science Reference, 2019. - ISBN 9781522579793
~РУБ DDC 401/.41
Рубрики: Discourse analysis, Narrative.
Narration (Rhetoric)--Data processing.
Narrative inquiry (Research method)
Natural language processing (Computer science)
Computational linguistics.
LANGUAGE ARTS & DISCIPLINES / General
Аннотация: "This book discusses issues of narrative-related information and communication technologies, cognitive mechanism and analyses, and theoretical perspectives on narratives and the story generation process. Focusing on emerging research as well as applications in a variety of fields including marketing, philosophy, psychology, art, and literature"--
Доп.точки доступа:
Ogata, Takashi, (1958-) \editor.\
Akimoto, Taisuke, (1984-) \editor.\
P 86
Post-narratology through computational and cognitive approaches / / Takashi Ogata and Taisuke Akimoto, editors. - Hershey, PA : : Information Science Reference,, 2019. - 1 online resource. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/24D66BB5-8018-4152-89E4-7D206BDA3525. - ISBN 9781522579809 (electronic bk.). - ISBN 152257980X (electronic bk.)
Print version record.
Параллельные издания: Print version: : Post-narratology through computational and cognitive approaches. - Hershey, PA : Information Science Reference, 2019. - ISBN 9781522579793
Рубрики: Discourse analysis, Narrative.
Narration (Rhetoric)--Data processing.
Narrative inquiry (Research method)
Natural language processing (Computer science)
Computational linguistics.
LANGUAGE ARTS & DISCIPLINES / General
Аннотация: "This book discusses issues of narrative-related information and communication technologies, cognitive mechanism and analyses, and theoretical perspectives on narratives and the story generation process. Focusing on emerging research as well as applications in a variety of fields including marketing, philosophy, psychology, art, and literature"--
Доп.точки доступа:
Ogata, Takashi, (1958-) \editor.\
Akimoto, Taisuke, (1984-) \editor.\
4.
Подробнее
DDC 410.1/880151953
M 78
Moisl, Hermann, (1949-).
Cluster analysis for corpus linguistics / / by Hermann Moisl. - 1515/9783110363814. - Berlin ; ; Boston : : De Gruyter Mouton,, ©2015. - 1 online resource (xv, 381 pages .). : il ( час. мин.), 1515/9783110363814. - (Quantitative linguistics ; ; 66). - In English. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/82BEF75D-A9B4-4504-B6F3-D49B646481C9. - ISBN 311036381X (electronic bk.). - ISBN 9783110363814 (electronic bk.). - ISBN 9783110393170. - ISBN 3110393174
Print version record.
Параллельные издания: Print version: : Moisl, Hermann, 1949- Cluster analysis for corpus linguistics. - Berlin ; Boston : De Gruyter, [2015]. - ISBN 9783110350258
Содержание:
Motivation -- Data -- Cluster -- Hypothesis generation -- Literature review.
~РУБ DDC 410.1/880151953
Рубрики: Corpora (Linguistics)--Data processing.
Cluster analysis--Data processing.
Natural language processing (Computer science)
Quantitative linguistics.
Computational linguistics.
LANGUAGE ARTS & DISCIPLINES--Linguistics--Historical & Comparative.
Korpus
Cluster-Analyse
Sprache, Linguistik.
Аннотация: The rapidly growing volume of digital natural language text and the complexity of data abstracted from it have increasingly rendered traditional corpus linguistic analytical methodology obsolete. This book describes a cluster analytic methodology for generating linguistic hypotheses on the basis of data abstracted from language corpora.
M 78
Moisl, Hermann, (1949-).
Cluster analysis for corpus linguistics / / by Hermann Moisl. - 1515/9783110363814. - Berlin ; ; Boston : : De Gruyter Mouton,, ©2015. - 1 online resource (xv, 381 pages .). : il ( час. мин.), 1515/9783110363814. - (Quantitative linguistics ; ; 66). - In English. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/82BEF75D-A9B4-4504-B6F3-D49B646481C9. - ISBN 311036381X (electronic bk.). - ISBN 9783110363814 (electronic bk.). - ISBN 9783110393170. - ISBN 3110393174
Print version record.
Параллельные издания: Print version: : Moisl, Hermann, 1949- Cluster analysis for corpus linguistics. - Berlin ; Boston : De Gruyter, [2015]. - ISBN 9783110350258
Содержание:
Motivation -- Data -- Cluster -- Hypothesis generation -- Literature review.
Рубрики: Corpora (Linguistics)--Data processing.
Cluster analysis--Data processing.
Natural language processing (Computer science)
Quantitative linguistics.
Computational linguistics.
LANGUAGE ARTS & DISCIPLINES--Linguistics--Historical & Comparative.
Korpus
Cluster-Analyse
Sprache, Linguistik.
Аннотация: The rapidly growing volume of digital natural language text and the complexity of data abstracted from it have increasingly rendered traditional corpus linguistic analytical methodology obsolete. This book describes a cluster analytic methodology for generating linguistic hypotheses on the basis of data abstracted from language corpora.
5.
Подробнее
DDC 006.35
S 80
Srinivasa-Desikan, Bhargav,.
Natural language processing and computational linguistics : : a practical guide to text analysis with Python, Gensim, spaCy, and Keras / / Bhargav Srinivasa-Desikan. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/BCEB45F0-8E91-41FE-A0F6-85785EB72391. - ISBN 9781788837033 (electronic bk.). - ISBN 1788837037 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed July 30, 2018).
Параллельные издания: Print version: :
~РУБ DDC 006.35
Рубрики: Natural language processing (Computer science)
Computational linguistics.
Machine learning.
Python (Computer program language)
Computational linguistics.
Machine learning.
Natural language processing (Computer science)
Python (Computer program language)
COMPUTERS / General
S 80
Srinivasa-Desikan, Bhargav,.
Natural language processing and computational linguistics : : a practical guide to text analysis with Python, Gensim, spaCy, and Keras / / Bhargav Srinivasa-Desikan. - Birmingham, UK : : Packt Publishing,, 2018. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/BCEB45F0-8E91-41FE-A0F6-85785EB72391. - ISBN 9781788837033 (electronic bk.). - ISBN 1788837037 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed July 30, 2018).
Параллельные издания: Print version: :
Рубрики: Natural language processing (Computer science)
Computational linguistics.
Machine learning.
Python (Computer program language)
Computational linguistics.
Machine learning.
Natural language processing (Computer science)
Python (Computer program language)
COMPUTERS / General
6.
Подробнее
DDC 629.892
M 84
Morena Alberola, Alberola, Álvaro,.
Artificial vision and language processing for robotics : : create end-to-end systems that can power robots with artificial vision and deep learning techniques / / Álvaro Morena Alberola, Gonzalo Molina Gallego, Unai Garay Maestre. - Birmingham, UK : : Packt Publishing,, ©2019. - 1 online resource : : il. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/E83C4DCA-C2B7-4405-8CD7-2E5DA430AA4E. - ISBN 9781838557669 (electronic book). - ISBN 1838557660 (electronic book)
Print version record.
Параллельные издания: Print version: : Alberola, Álvaro Morena. Artificial vision and language processing for robotics. - Birmingham : Packt Publishing, 2019. - ISBN 9781838552268
Содержание:
Fundamentals of robotics -- Introduction to computer vision -- Fundamentals of natural language processing -- Neural networks with NLP -- Convolutional neural networks for computer vision -- Robot Operating System (ROS) -- Build a text-based dialogue system (Chatbot) -- Object recognition to guide a robot using CNNs -- Computer vision for robotics.
~РУБ DDC 629.892
Рубрики: Artificial vision.
Robotics.
Natural language processing (Computer science)
Neural networks (Computer science)
Аннотация: Artificial Vision and Language Processing for Robotics begins by discussing the theory behind robots. You'll compare different methods used to work with robots and explore computer vision, its algorithms, and limits. You'll then learn how to control the robot with natural language processing commands. You'll study Word2Vec and GloVe embedding techniques, non-numeric data, recurrent neural network (RNNs), and their advanced models. You'll create a simple Word2Vec model with Keras, as well as build a convolutional neural network (CNN) and improve it with data augmentation and transfer learning. You'll study the ROS and build a conversational agent to manage your robot. You'll also integrate your agent with the ROS and convert an image to text and text to speech. You'll learn to build an object recognition system using a video. By the end of this book, you'll have the skills you need to build a functional application that can integrate with a ROS to extract useful information about your environment. Explore the ROS and build a basic robotic system ; Understand the architecture of neural networks ; Identify conversation intents with NLP techniques ; Learn and use the embedding with Word2Vec and GloVe ; Build a basic CNN and improve it using generative models ; Use deep learning to implement artificial intelligence (AI) and object recognition ; Develop a simple object recognition system using CNNs ; Integrate AI with ROS to enable your robot to recognize objects. Artificial Vision and Language Processing for Robotics is for robotics engineers who want to learn how to integrate computer vision and deep learning techniques to create complete robotic systems. It will prove beneficial to you if you have working knowledge of Python and a background in deep learning. Knowledge of the ROS is a plus.
Доп.точки доступа:
Molina Gallego, Gonzalo, \author.\
Garay Maestre, Unai, \author.\
M 84
Morena Alberola, Alberola, Álvaro,.
Artificial vision and language processing for robotics : : create end-to-end systems that can power robots with artificial vision and deep learning techniques / / Álvaro Morena Alberola, Gonzalo Molina Gallego, Unai Garay Maestre. - Birmingham, UK : : Packt Publishing,, ©2019. - 1 online resource : : il. - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/E83C4DCA-C2B7-4405-8CD7-2E5DA430AA4E. - ISBN 9781838557669 (electronic book). - ISBN 1838557660 (electronic book)
Print version record.
Параллельные издания: Print version: : Alberola, Álvaro Morena. Artificial vision and language processing for robotics. - Birmingham : Packt Publishing, 2019. - ISBN 9781838552268
Содержание:
Fundamentals of robotics -- Introduction to computer vision -- Fundamentals of natural language processing -- Neural networks with NLP -- Convolutional neural networks for computer vision -- Robot Operating System (ROS) -- Build a text-based dialogue system (Chatbot) -- Object recognition to guide a robot using CNNs -- Computer vision for robotics.
Рубрики: Artificial vision.
Robotics.
Natural language processing (Computer science)
Neural networks (Computer science)
Аннотация: Artificial Vision and Language Processing for Robotics begins by discussing the theory behind robots. You'll compare different methods used to work with robots and explore computer vision, its algorithms, and limits. You'll then learn how to control the robot with natural language processing commands. You'll study Word2Vec and GloVe embedding techniques, non-numeric data, recurrent neural network (RNNs), and their advanced models. You'll create a simple Word2Vec model with Keras, as well as build a convolutional neural network (CNN) and improve it with data augmentation and transfer learning. You'll study the ROS and build a conversational agent to manage your robot. You'll also integrate your agent with the ROS and convert an image to text and text to speech. You'll learn to build an object recognition system using a video. By the end of this book, you'll have the skills you need to build a functional application that can integrate with a ROS to extract useful information about your environment. Explore the ROS and build a basic robotic system ; Understand the architecture of neural networks ; Identify conversation intents with NLP techniques ; Learn and use the embedding with Word2Vec and GloVe ; Build a basic CNN and improve it using generative models ; Use deep learning to implement artificial intelligence (AI) and object recognition ; Develop a simple object recognition system using CNNs ; Integrate AI with ROS to enable your robot to recognize objects. Artificial Vision and Language Processing for Robotics is for robotics engineers who want to learn how to integrate computer vision and deep learning techniques to create complete robotic systems. It will prove beneficial to you if you have working knowledge of Python and a background in deep learning. Knowledge of the ROS is a plus.
Доп.точки доступа:
Molina Gallego, Gonzalo, \author.\
Garay Maestre, Unai, \author.\
7.
Подробнее
DDC 808/.036
O-35
Ogata, Takashi, (1958-).
Toward an integrated approach to narrative generation : : emerging research and opportunities / / Takashi Ogata. - 4018/978-1-5225-9693-6. - Hershey, Pennsylvania : : IGI Global,, [2020]. - 1 online resource. ( час. мин.), 4018/978-1-5225-9693-6. - (Advances in Linguistics and Communication Studies (ALCS) Book Series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C3CD12A7-760C-4E2F-821D-E84F2832A8D6. - ISBN 9781522596950 (electronic book). - ISBN 152259695X (electronic book)
Description based on online resource; title from digital title page (viewed on December 02, 2019).
Параллельные издания: Print version: :
Содержание:
Chapter 1. What are narrative generation phenomena? -- Chapter 2. Areas of narratives or narrative genres -- Chapter 3. Narratology and post-narratology -- Chapter 4. Theoretical or philosophical considerations for an integrated narrative generation approach.
~РУБ DDC 808/.036
Рубрики: Discourse analysis, Narrative.
Narration (Rhetoric)--Data processing.
Narrative inquiry (Research method)
Natural language processing (Computer science)
Computational linguistics.
Computational linguistics.
Discourse analysis, Narrative.
Narrative inquiry (Research method)
Natural language processing (Computer science)
Аннотация: "This book examines computational and cognitive approaches to narratology"--
Доп.точки доступа:
IGI Global,
O-35
Ogata, Takashi, (1958-).
Toward an integrated approach to narrative generation : : emerging research and opportunities / / Takashi Ogata. - 4018/978-1-5225-9693-6. - Hershey, Pennsylvania : : IGI Global,, [2020]. - 1 online resource. ( час. мин.), 4018/978-1-5225-9693-6. - (Advances in Linguistics and Communication Studies (ALCS) Book Series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/C3CD12A7-760C-4E2F-821D-E84F2832A8D6. - ISBN 9781522596950 (electronic book). - ISBN 152259695X (electronic book)
Description based on online resource; title from digital title page (viewed on December 02, 2019).
Параллельные издания: Print version: :
Содержание:
Chapter 1. What are narrative generation phenomena? -- Chapter 2. Areas of narratives or narrative genres -- Chapter 3. Narratology and post-narratology -- Chapter 4. Theoretical or philosophical considerations for an integrated narrative generation approach.
Рубрики: Discourse analysis, Narrative.
Narration (Rhetoric)--Data processing.
Narrative inquiry (Research method)
Natural language processing (Computer science)
Computational linguistics.
Computational linguistics.
Discourse analysis, Narrative.
Narrative inquiry (Research method)
Natural language processing (Computer science)
Аннотация: "This book examines computational and cognitive approaches to narratology"--
Доп.точки доступа:
IGI Global,
8.
Подробнее
DDC 006.3/5
K 27
Kedia, Aman,.
Hands-on Python natural language processing : : explore tools and techniques to analyze and process text with a view to building real-world NLP applications / / Aman Kedia, Mayank Rasu. - Birmingham, UK : : Packt Publishing,, 2020. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/334CF680-946D-499A-90C9-44D55E5E64A3. - ISBN 1838982582. - ISBN 9781838982584 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed October 27, 2020).
~РУБ DDC 006.3/5
Рубрики: Natural language processing (Computer science)
Python (Computer program language)
Mathematical theory of computation.
Natural language & machine translation.
Machine learning.
Data capture & analysis.
Computers--Machine Theory.
Computers--Natural Language Processing.
Computers--Data Processing.
Доп.точки доступа:
Rasu, Mayank, \author.\
K 27
Kedia, Aman,.
Hands-on Python natural language processing : : explore tools and techniques to analyze and process text with a view to building real-world NLP applications / / Aman Kedia, Mayank Rasu. - Birmingham, UK : : Packt Publishing,, 2020. - 1 online resource (1 volume) : : il. - Includes bibliographical references. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/334CF680-946D-499A-90C9-44D55E5E64A3. - ISBN 1838982582. - ISBN 9781838982584 (electronic bk.)
Description based on online resource; title from title page (Safari, viewed October 27, 2020).
Рубрики: Natural language processing (Computer science)
Python (Computer program language)
Mathematical theory of computation.
Natural language & machine translation.
Machine learning.
Data capture & analysis.
Computers--Machine Theory.
Computers--Natural Language Processing.
Computers--Data Processing.
Доп.точки доступа:
Rasu, Mayank, \author.\
9.
Подробнее
DDC 006.35
A 62
Antić, Zhenya.
Python Natural Language Processing Cookbook [[electronic resource] :] : Over 50 Recipes to Understand, Analyze, and Generate Text for Implementing Language Processing Tasks. / Zhenya. Antić. - Birmingham : : Packt Publishing, Limited,, 2021. - 1 online resource (285 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DE029E14-9D24-448A-92F0-7D33053C1CC2. - ISBN 1838987789. - ISBN 9781838987787 (electronic bk.)
Description based upon print version of record. How to do it...
Параллельные издания: Print version: : Antić, Zhenya Python Natural Language Processing Cookbook. - Birmingham : Packt Publishing, Limited,c2021. - ISBN 9781838987312
Содержание:
Cover -- Title Page -- Copyright and Credits -- Contributors -- Table of Contents -- Preface -- Chapter 1: Learning NLP Basics -- Technical requirements -- Dividing text into sentences -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Dividing sentences into words -- tokenization -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Parts of speech tagging -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Word stemming -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also
Combining similar words -- lemmatization -- Getting ready -- How to do it... -- How it works... -- There's more... -- Removing stopwords -- Getting ready... -- How to do it... -- How it works... -- There's more... -- Chapter 2: Playing with Grammar -- Technical requirements -- Counting nouns -- plural and singular nouns -- Getting ready -- How to do it... -- How it works... -- There's more... -- Getting the dependency parse -- Getting ready -- How to do it... -- How it works... -- See also -- Splitting sentences into clauses -- Getting ready -- How to do it... -- How it works... -- Extracting noun chunks -- Getting ready
How to do it... -- How it works... -- There's more... -- See also -- Extracting entities and relations -- Getting ready -- How to do it... -- How it works... -- There's more... -- Extracting subjects and objects of the sentence -- Getting ready -- How to do it... -- How it works... -- There's more... -- Finding references -- anaphora resolution -- Getting ready -- How to do it... -- How it works... -- There's more... -- Chapter 3: Representing Text -- Capturing Semantics -- Technical requirements -- Putting documents into a bag of words -- Getting ready -- How to do it... -- How it works... -- There's more...
Constructing the N-gram model -- Getting ready -- How to do it... -- How it works... -- There's more... -- Representing texts with TF-IDF -- Getting ready -- How to do it... -- How it works... -- There's more... -- Using word embeddings -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Training your own embeddings model -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Representing phrases -- phrase2vec -- Getting ready -- How to do it... -- How it works... -- See also -- Using BERT instead of word embeddings -- Getting ready -- How to do it...
How it works... -- Getting started with semantic search -- Getting ready -- How to do it... -- How it works... -- See also -- Chapter 4: Classifying Texts -- Technical requirements -- Getting the dataset and evaluation baseline ready -- Getting ready -- How to do it... -- How it works... -- Performing rule-based text classification using keywords -- Getting ready -- How to do it... -- How it works... -- There's more... -- Clustering sentences using K-means -- unsupervised text classification -- Getting ready -- How to do it... -- How it works... -- Using SVMs for supervised text classification -- Getting ready
~РУБ DDC 006.35
Рубрики: Natural language processing (Computer science)
Python (Computer program language)
Natural Language Processing
Traitement automatique des langues naturelles.
Python (Langage de programmation)
Natural language processing (Computer science)
Python (Computer program language)
Аннотация: Leverage your natural language processing skills to make sense of text. With this book, you'll learn fundamental and advanced NLP techniques in Python that will help you to make your data fit for application in a wide variety of industries. You'll also find recipes for overcoming common challenges in implementing NLP pipelines.
A 62
Antić, Zhenya.
Python Natural Language Processing Cookbook [[electronic resource] :] : Over 50 Recipes to Understand, Analyze, and Generate Text for Implementing Language Processing Tasks. / Zhenya. Antić. - Birmingham : : Packt Publishing, Limited,, 2021. - 1 online resource (285 p.). - URL: https://library.dvfu.ru/lib/document/SK_ELIB/DE029E14-9D24-448A-92F0-7D33053C1CC2. - ISBN 1838987789. - ISBN 9781838987787 (electronic bk.)
Description based upon print version of record. How to do it...
Параллельные издания: Print version: : Antić, Zhenya Python Natural Language Processing Cookbook. - Birmingham : Packt Publishing, Limited,c2021. - ISBN 9781838987312
Содержание:
Cover -- Title Page -- Copyright and Credits -- Contributors -- Table of Contents -- Preface -- Chapter 1: Learning NLP Basics -- Technical requirements -- Dividing text into sentences -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Dividing sentences into words -- tokenization -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Parts of speech tagging -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Word stemming -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also
Combining similar words -- lemmatization -- Getting ready -- How to do it... -- How it works... -- There's more... -- Removing stopwords -- Getting ready... -- How to do it... -- How it works... -- There's more... -- Chapter 2: Playing with Grammar -- Technical requirements -- Counting nouns -- plural and singular nouns -- Getting ready -- How to do it... -- How it works... -- There's more... -- Getting the dependency parse -- Getting ready -- How to do it... -- How it works... -- See also -- Splitting sentences into clauses -- Getting ready -- How to do it... -- How it works... -- Extracting noun chunks -- Getting ready
How to do it... -- How it works... -- There's more... -- See also -- Extracting entities and relations -- Getting ready -- How to do it... -- How it works... -- There's more... -- Extracting subjects and objects of the sentence -- Getting ready -- How to do it... -- How it works... -- There's more... -- Finding references -- anaphora resolution -- Getting ready -- How to do it... -- How it works... -- There's more... -- Chapter 3: Representing Text -- Capturing Semantics -- Technical requirements -- Putting documents into a bag of words -- Getting ready -- How to do it... -- How it works... -- There's more...
Constructing the N-gram model -- Getting ready -- How to do it... -- How it works... -- There's more... -- Representing texts with TF-IDF -- Getting ready -- How to do it... -- How it works... -- There's more... -- Using word embeddings -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Training your own embeddings model -- Getting ready -- How to do it... -- How it works... -- There's more... -- See also -- Representing phrases -- phrase2vec -- Getting ready -- How to do it... -- How it works... -- See also -- Using BERT instead of word embeddings -- Getting ready -- How to do it...
How it works... -- Getting started with semantic search -- Getting ready -- How to do it... -- How it works... -- See also -- Chapter 4: Classifying Texts -- Technical requirements -- Getting the dataset and evaluation baseline ready -- Getting ready -- How to do it... -- How it works... -- Performing rule-based text classification using keywords -- Getting ready -- How to do it... -- How it works... -- There's more... -- Clustering sentences using K-means -- unsupervised text classification -- Getting ready -- How to do it... -- How it works... -- Using SVMs for supervised text classification -- Getting ready
Рубрики: Natural language processing (Computer science)
Python (Computer program language)
Natural Language Processing
Traitement automatique des langues naturelles.
Python (Langage de programmation)
Natural language processing (Computer science)
Python (Computer program language)
Аннотация: Leverage your natural language processing skills to make sense of text. With this book, you'll learn fundamental and advanced NLP techniques in Python that will help you to make your data fit for application in a wide variety of industries. You'll also find recipes for overcoming common challenges in implementing NLP pipelines.
10.
Подробнее
DDC 006.3/5
D 30
Deep natural language processing and AI applications for industry 5.0 / / Poonam Tanwar, Arti Saxena, C. Priya. - 4018/978-1-7998-7728-8. - Hershey, PA : : Engineering Science Reference, an imprint of IGI Global,, [2021]. - 1 online resource (xvii, 240 pages) : : il ( час. мин.), 4018/978-1-7998-7728-8. - (Advances in computational intelligence and robotics (ACIR) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/996A716C-EFEB-4CC7-B240-EADC7870A8D2. - ISBN 9781799877318 (electronic book). - ISBN 1799877310 (electronic book). - ISBN 1799877302 (electronic book). - ISBN 9781799877301 (electronic bk.)
"Premier Reference Source" -- taken from front cover. Description based on online resource; title from digital title page (viewed on August 31, 2021).
Параллельные издания: Print version: : Deep natural language processing and AI applications for industry 5.0. - Hershey, PA : Engineering Science Reference, [2021]. - ISBN 9781799877288
Содержание:
Chapter 1. Recent trends in deepfake detection -- Chapter 2. Text mining using Twitter data -- Chapter 3. Analysis report for statistics in the Twitter network -- Chapter 4. Chemical named entity recognition using deep learning techniques: a review -- Chapter 5. Mathematical information retrieval trends and techniques -- Chapter 6. Language processing and Python -- Chapter 7. Creditworthiness assessment using natural language processing -- Chapter 8. NLP for Chatbot application: tools and techniques used for Chatbot application, NLP techniques for Chatbot, implementation -- Chapter 9. Significance of natural language processing in data analysis using business intelligence -- Chapter 10. Deep NLP in the healthcare industry: applied machine learning and artificial intelligence in rheumatoid arthritis -- Chapter 11. Information retrieval in business industry using Blockchain technology and artificial intelligence.
~РУБ DDC 006.3/5
Рубрики: Natural language processing (Computer science)
Industry 4.0.
Natural Language Processing
Traitement automatique des langues naturelles.
Industrie 4.0.
Industry 4.0.
Natural language processing (Computer science)
Аннотация: "This book is a collection of contributed chapters of latest research findings, ideas, and applications in the fields of Natural Language Processing and their applications, Computational Linguistics, Deep NLP, Web Analysis, Sentiments analysis for business and industry"--
Доп.точки доступа:
Tanwar, Poonam, (1979-) \editor.\
Saxena, Arti, (1984-) \editor.\
Priya, C., (1979-) \editor.\
D 30
Deep natural language processing and AI applications for industry 5.0 / / Poonam Tanwar, Arti Saxena, C. Priya. - 4018/978-1-7998-7728-8. - Hershey, PA : : Engineering Science Reference, an imprint of IGI Global,, [2021]. - 1 online resource (xvii, 240 pages) : : il ( час. мин.), 4018/978-1-7998-7728-8. - (Advances in computational intelligence and robotics (ACIR) book series). - Includes bibliographical references and index. - URL: https://library.dvfu.ru/lib/document/SK_ELIB/996A716C-EFEB-4CC7-B240-EADC7870A8D2. - ISBN 9781799877318 (electronic book). - ISBN 1799877310 (electronic book). - ISBN 1799877302 (electronic book). - ISBN 9781799877301 (electronic bk.)
"Premier Reference Source" -- taken from front cover. Description based on online resource; title from digital title page (viewed on August 31, 2021).
Параллельные издания: Print version: : Deep natural language processing and AI applications for industry 5.0. - Hershey, PA : Engineering Science Reference, [2021]. - ISBN 9781799877288
Содержание:
Chapter 1. Recent trends in deepfake detection -- Chapter 2. Text mining using Twitter data -- Chapter 3. Analysis report for statistics in the Twitter network -- Chapter 4. Chemical named entity recognition using deep learning techniques: a review -- Chapter 5. Mathematical information retrieval trends and techniques -- Chapter 6. Language processing and Python -- Chapter 7. Creditworthiness assessment using natural language processing -- Chapter 8. NLP for Chatbot application: tools and techniques used for Chatbot application, NLP techniques for Chatbot, implementation -- Chapter 9. Significance of natural language processing in data analysis using business intelligence -- Chapter 10. Deep NLP in the healthcare industry: applied machine learning and artificial intelligence in rheumatoid arthritis -- Chapter 11. Information retrieval in business industry using Blockchain technology and artificial intelligence.
Рубрики: Natural language processing (Computer science)
Industry 4.0.
Natural Language Processing
Traitement automatique des langues naturelles.
Industrie 4.0.
Industry 4.0.
Natural language processing (Computer science)
Аннотация: "This book is a collection of contributed chapters of latest research findings, ideas, and applications in the fields of Natural Language Processing and their applications, Computational Linguistics, Deep NLP, Web Analysis, Sentiments analysis for business and industry"--
Доп.точки доступа:
Tanwar, Poonam, (1979-) \editor.\
Saxena, Arti, (1984-) \editor.\
Priya, C., (1979-) \editor.\
Страница 1, Результатов: 14